
Best-SAT
YouTube

Tomáš Sláma
20. 5. 2022

This PDF was automatically generated (March 28, 2024) from the website

https://slama.dev/youtube/best-sat,
which is the prefered way of viewing this document. Please excuse any conversion-related mistakes.

https://slama.dev/youtube/best-sat

This post is an expanded translation of my lecture notes from a Randomized and Approximation Algorithms
course that I took, and a more detailed explanation of the topics covered in my video about BEST-SAT.

Basic definitions

[1]
Definice (Optimalization problem) is a tuple I,F , f, g

• set of all input instances I
• sets of permissible inputs ∀I ∈ I : F(I)
• utility function ∀I ∈ I, A ∈ F(I) : f(I, A)
• whether we’re maximizing or minimizing (a single bit g)

Definice (NP-Optimalization problem) is an optimalization problem I,F , f, g, for which we additionally
require that:

• the length of all permissible solutions is polynomial
• the language of (I, A), I ∈ I, A ∈ F(I) is polynomial

– we can check the correctness of a solution in polynomial time
• f is computable in polynomial time

[2]
Definice: algorithm A is R-approximation, if:

• it computes the solution in polynomial time (in terms of |I|)
• for minimalization problem: ∀I : f(A) ≤ R · OPT(I)
• for maximalization problem: ∀I : f(A) ≥ OPT(I)/R

MAX-SAT
• Input: C1 ∧ . . . ∧ Cn, each clause is a disjunction of kj ≥ 1 literals
• Output: evaluation a ∈ {0, 1}n of the variables (sometimes called literals)
• Goal: maximize the number of satisfied clauses

∑
wj

We also assume that:

• no literal repeats in a clause
• at most one of xi, xi appearas in a clause

RAND-SAT
Algoritmus (RAND-SAT)

1. choose all literals randomly (independently, for p = 1/2)
2. profit?

Věta: RAND-SAT is a 2-approximation algorithm.

Důkaz: we’ll create an indicator variable Yj for each clause

• the chance that Cj is not satisfied is 1
2k

Since the size of the clause k ≥ 1, we get E [Yj] = Pr [Cj is satistied] = 1− 1
2k

≥ 1
2 , thus

E

 n∑
j=1

Yj

 linearity
of expectation

=

n∑
j=1

E [Yj] ≥
n∑

j=1

1

2
≥ 1

2
OPT

[1]An example problem could be minimum spanning trees:
• input instances: set of all weighted graphs
• permissible inputs: spanning trees for the given weighted graph
• utility function: the spanning tree weight (sum of its edges)
• we’re minimizing

[2]For minimalization problem, we ensure that the solution is always small enough. For maximalization problem, we ensure that
the solution is always large enough.

1

https://slama.dev/poznámky-z-přednášky/aproximacni-algoritmy/
https://www.youtube.com/watch?v=OV82ab-C85w

LP-SAT

[3]
Algoritmus (LP-SAT)

1. build an integer linear program:
• variables will be:

– yi for each literal
– zj for each clause

• inequalitites will be one for each clause, in the form

zj ≤
∑

positive
yi +

∑
negative

(1− yi)

• we’ll maximize the number of satisfied clauses
∑

zj
2. relax the program (allow real variables instead of integers) and calculate the optimum y∗, z∗

3. set literals xi to 1 with probability y∗i

Věta: LP-SAT is a
(
1− 1

e

)
-approximation algorithm.

To prove this, we’ll use a few lemmas/theorems that aren’t difficult to prove, but aren’t really interesting. I left
links to (Wikipedia and I don’t feel bad about it) articles with proofs for each, if you’re interested.

Fakt (A - A/G mean inequality)
n∏

i=1

a
1
n
i ≤ 1

n

n∑
i=1

ai

Důkaz: https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means

Fakt (B - Jensen’s inequality) if a function is concave on the interval [0, 1] and f(0) = a, f(1) = a+ b, then

∀x ∈ [0, 1] : f(x) ≥ a+ bx

Důkaz: https://en.wikipedia.org/wiki/Jensen%27s_inequality

Fakt (C - 1/e inequality) (
1− 1

n

)n

≤ 1

e

Důkaz: https://en.wikipedia.org/wiki/E_(mathematical_constant)#Inequalities

Důkaz (of the main theorem) consider y∗, z∗ and Cj with kj literals; then

Pr [Cj is not satisfied] =

positive︷ ︸︸ ︷∏
i: xi∈Cj

(1− y∗i)

negative︷ ︸︸ ︷∏
i: xi∈Cj

y∗i

A
≤

 1

kj

 ∑
i: xi∈Cj

(1− y∗i) +
∑

i: xi∈Cj

y∗i

kj

=

1− 1

kj

 ∑
i: xi∈Cj

y∗i +
∑

i: xi∈Cj

(1− y∗i)

kj

≤
(
1−

z∗j
kj

)kj

[3]We’re using the optimal solution to the linear program (and generally the formula, if we allow real vlaues for literals) as a
guide for our randomized algorithm.

2

https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Jensen%27s_inequality
https://en.wikipedia.org/wiki/E_(mathematical_constant)#Inequalities

We’re interested in the satisfied ones, so

Pr [Cj is satisfied] ≥

our function f(z∗
j)︷ ︸︸ ︷

1−
(
1−

z∗j
kj

)kj

B
≥

[
1−

(
1− 1

kj

)kj
]
z∗j

C
≥

(
1− 1

e

)
z∗j

To use fact B, we observed that a = f(0) = 0 and that the second derivation is non-positive (so the function is
concave). Now to formally count how many our program satisfies:

E

 m∑
j=1

Yj

 =

m∑
j=1

E [Yj]

≥
∑
j∈U

Pr [Cj is satisfied]

≥
∑
j∈U

(
1− 1

e

)
z∗j

=

(
1− 1

e

)
OPT

BEST-SAT
Algoritmus (BEST-SAT)

1. assign a value of a literal using RAND-SAT with probability 1/2, else use BEST-SAT
2. have an existential crisis about the fact that this works and is asymptotically optimal

Věta: BEST-SAT is 3
4 -approximation.

Důkaz: we want to prove that Pr [Cj is satisfied] ≥ 3
4z

∗
j .

Let’s look at the probability that each algorithm satisfies a clause of k variables:

• RAND-SAT: 1− 1
2k

(at least one literal must be satisfied)
• LP-SAT:

[
1−

(
1− 1

k

)k]
z∗j (the formula right before using fact C)

Now the proof boils down to the following table:

kj RAND-SAT LP-SAT BEST-SAT
1 1

2 ≥ 1
2z

∗
j 1 · z∗j 1

2
1
2 + 1

2z
∗
j ≥ 3

4z
∗
j

2 ≥ 3
4z

∗
j

3
4 · z∗j ≥ 3

4z
∗
j

≥ 3 ≥ 7
8z

∗
j ≥

(
1− 1

e

)
· z∗j > 3

4z
∗
j

3

	Basic definitions
	MAX-SAT
	RAND-SAT
	LP-SAT
	BEST-SAT

