Best-SAT
YouTube

Tomas Slama
20. 5. 2022

This PDF was automatically generated (March 28, 2024) from the website
https://slama.dev/youtube /best-sat,

which is the prefered way of viewing this document. Please excuse any conversion-related mistakes.


https://slama.dev/youtube/best-sat

This post is an expanded translation of my lecture notes from a Randomized and Approximation Algorithms
course that I took, and a more detailed explanation of the topics covered in my video about BEST-SAT.

Basic definitions

Definice (Optimalization problem) is a tuple Z, F, f, g

¢ set of all input instances 7 1]
« sets of permissible inputs VI € 7 : F(I)

o utility function VI € Z,A € F(I): f(I,A)

o whether we're maximizing or minimizing (a single bit g)

Definice (NP-Optimalization problem) is an optimalization problem Z, F, f, g, for which we additionally
require that:

o the length of all permissible solutions is polynomial
o the language of (I, A),I € Z, A € F(I) is polynomial

— we can check the correctness of a solution in polynomial time
e f is computable in polynomial time

Definice: algorithm A is R-approximation, if:

e it computes the solution in polynomial time (in terms of |I]) 2]
o for minimalization problem: VI : f(A) < R- OPT(I)
o for maximalization problem: VI : f(A) > OPT(I)/R

MAX-SAT

o Input: Cy A... A Cy, each clause is a disjunction of k; > 1 literals
o Output: evaluation a € {0,1}" of the variables (sometimes called literals)
o Goal: maximize the number of satisfied clauses > w;

We also assume that:

e no literal repeats in a clause
e at most one of z;,T; appearas in a clause

RAND-SAT

Algoritmus (RAND-SAT)

1. choose all literals randomly (independently, for p = 1/2)
2. profit?

Véta: RAND-SAT is a 2-approximation algorithm.
Dikaz: we’ll create an indicator variable Y; for each clause
o the chance that C is not satisfied is 2k

Since the size of the clause k > 1, we get E[Y;] = Pr[C; is satistied] = 1 — 5 > 1, thus

1
2

linearity

BN "1 Ly
ZY f pec ZE 25 §

[1]An example problem could be minimum spanning trees:

input instances: set of all weighted graphs

permissible inputs: spanning trees for the given weighted graph
utility function: the spanning tree weight (sum of its edges)
we're minimizing

[2] For minimalization problem, we ensure that the solution is always small enough. For maximalization problem, we ensure that
the solution is always large enough.


https://slama.dev/poznámky-z-přednášky/aproximacni-algoritmy/
https://www.youtube.com/watch?v=OV82ab-C85w

LP-SAT

Algoritmus (LP-SAT)

1. build an integer linear program:
o variables will be:
— y; for each literal
— #z; for each clause
e inequalitites will be one for each clause, in the form

G< Y vt Y, (1-w)

positive negative

o we'll mazimize the number of satisfied clauses ) z;
2. relax the program (allow real variables instead of integers) and calculate the optimum y*, z*
3. set literals z; to 1 with probability y;

Véta: LP-SAT is a (1 — é)-approximation algorithm.

To prove this, we’ll use a few lemmas/theorems that aren’t difficult to prove, but aren’t really interesting. I left
links to (Wikipedia and I don’t feel bad about it) articles with proofs for each, if you're interested.

Fakt (A - A/G mean inequality)

Dukaz: https://en.wikipedia.org/wiki/Inequality of arithmetic and geometric_means

Fakt (B - Jensen’s inequality) if a function is concave on the interval [0,1] and f(0) = a, f(1) = a+ b, then

Vo e [0,1]: f(z) > a+ bz

Diukaz: https://en.wikipedia.org/wiki/Jensen%27s_inequality
Fakt (C - 1/e inequality)

(-3) =

1-=-) <=

n e

Diukaz: https://en.wikipedia.org/wiki/E_ (mathematical constant)#Inequalities

Dikaz (of the main theorem) consider y*, z* and C; with k; literals; then

positive negative
—
Pr[C; is not satisfied] = H (1—vy5) H yr
i x;,€C; i ;€05
- k;
A 11
LS o+ X
L J i: £, €C i: T, €Cy
- k]
1 " *
= 1*]{:7 ‘ Z yiJF‘ Z (1—w)
L i: ¢, €C i: T, €C
*\ Kkj
2% i
<(-%)
J

[3] We’re using the optimal solution to the linear program (and generally the formula, if we allow real vlaues for literals) as a
guide for our randomized algorithm.


https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means
https://en.wikipedia.org/wiki/Jensen%27s_inequality
https://en.wikipedia.org/wiki/E_(mathematical_constant)#Inequalities

We're interested in the satisfied ones, so

. *
our function f(z7)

—_—
Z\ M
Pr[C} is satisfied] > 1 — (1 - kj>
J

IV®

1 kj . C 1 .

To use fact B, we observed that a = f(0) = 0 and that the second derivation is non-positive (so the function is
concave). Now to formally count how many our program satisfies:

E > Y| => E[V]
j=1 j=1
> Z Pr[C} is satisfied]
jeu
1 *
jeu

~(1-)orr
BEST-SAT

Algoritmus (BEST-SAT)
1. assign a value of a literal using RAND-SAT with probability 1/2, else use BEST-SAT
2. have an existential crisis about the fact that this works and is asymptotically optimal

Véta: BEST-SAT is %—approximation.

Dukaz: we want to prove that Pr[C; is satisfied] > %z;
Let’s look at the probability that each algorithm satisfies a clause of k variables:
« RAND-SAT: 1 — ;- (at least one literal must be satisfied)
o LP-SAT: [1 — (1 — %)k} 27 (the formula right before using fact C)

Now the proof boils down to the following table:

k; RAND-SAT LP-SAT BEST-SAT
1 1215 13 11720
2 > %z]* % " 23 > izj*
T % 1 * 3 _x
>3 > 8% >(1-2)-7 -




	Basic definitions
	MAX-SAT
	RAND-SAT
	LP-SAT
	BEST-SAT

