
GPU COMPUTING

LECTURE 03 - BASIC ARCHITECTURE

Kazem Shekofteh

kazem.shekofteh@ziti.uni-heidelberg.de

Institute of Computer Engineering

Ruprecht-Karls University of Heidelberg

mailto:kazem.shekofteh@ziti.uni-heidelberg.de

GK110 - ARCHITECTURE
Up to 15 SMX, 6 MCs,
L2 cache, PCIe 3.0,
CC 3.5

2

GK110 - ARCHITECTURE

192 SP units

64 DP units

32 load/store units

32 special function units

4 warp schedulers

Optimized for performance/watt

-> reduced clock frequency

Pollack’s law: S ∝ 2 complexity

3

BULK-SYNCHRONOUS PARALLEL

REMINDER: BULK-SYNCHRONOUS PARALLEL
In 1990, Valiant already described GPU computing
pretty well

Superstep

Compute, communicate, synchronize

Parallel slackness: # of virtual processors v, physical
processors p

v = 1: not viable

v = p: unpromising wrt optimality

v >> p: leverage slack to schedule and pipeline computation
and communication efficiently

Extremely scalable, bad for unstructured parallelism

5

Leslie G. Valiant, A bridging model for
parallel computation, Communications of

the ACM, Volume 33 Issue 8, Aug. 1990

REMINDER: VECTOR ISAS
Compact: single instruction defines N operations

Amortizes the cost of instruction fetch/decode/issue

Also reduces the frequency of branches

Parallel: N operations are (data) parallel

No dependencies

No need for complex hardware to detect parallelism  
(similar to VLIW)

Can execute in parallel assuming N parallel data paths

Expressive: memory operations describe patterns

Continuous or regular memory access pattern

Can prefetch or accelerate using wide/multi-banked memory

Can amortize high latency for 1st element over large sequential pattern

6

Instruction stream

D
at

a
po

ol

PU

PU

PU

PU

1

1

1

1

1

4x SIMD example

OUR VIEW OF A GPU
Software view: a programmable many-core scalar architecture

Huge amount of scalar threads to exploit parallel slackness, operates in lock-step

SIMT: single instruction, multiple threads

IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL

Hardware view: a programmable multi-core vector architecture

Illusion of scalar threads: hardware packs them into compound units

SIMD: single instruction, multiple data

IT’S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS

7

THE BEAUTY OF SIMPLICITY
GPU Computing & CUDA

Thread-collective computation and memory accesses

SIMT – Single Instruction, Multiple Threads

GPU collaborative computing

One thread per output element

Schedulers exploit parallel slack

GPU collaborative memory access

One thread per data element

MCs highly optimized to exploit concurrency

-> coalescing issues

-> If you do something on a GPU, do it collaboratively with all
threads

8
Co

m
pu

te
M

em
or

y

…

…

Output data set

M
C GDDR

GDDR

GDDR

(GLOBAL) MEMORY SUBSYSTEM

Thread

Thread
Block

Multiple
Kernels

Registers

64k/thread block

Shared Memory

16-48kB

L1 Cache

16-48kB

Read-only data
Cache 48kB

L2 Cache

1.5MB

GDDR (off-chip)

6GB

Host memory (off-device)

multiple TBs

GK110 – MEMORY HIERARCHY
Registers at thread level

Registers/thread depends on run-time
configuration

Max. 255 registers/thread

Shared memory / L1$ at block level

Variable sizes

L1$ can serve for register spilling

L1$ not coherent, write-invalidate

Compiler controlled RO L1$

L2$ / GDDR at device level

GDDR: ~400-600 cycles access latency

L2$ as victim cache for all upper units,
write-back

Purpose: reducing contention

10

Thread

Thread
Block

Multiple
Kernels

Registers

64k/thread block

Shared Memory

16-48kB

L1 Cache

16-48kB

Read-only data
Cache 48kB

L2 Cache

1.5MB

GDDR (off-chip)

6GB

Host memory (off-device)

multiple TBs

LOCAL MEMORY
Local memory: part of global memory, but
thread-local

Register spilling: when SM runs out of
resources

Limited register count per thread

Limited total number of registers

LM is used if the source code exceeds these
limits

Local because each thread has its private
area

Differences from global memory

Stores are cached in L1$

Addressing is resolved by compiler

Store always happens before load

Per thread: move data from GM to LM (stores)

Subsequent load accesses

11

HOST MEMORY
Pinned/unpinned host memory

Unpinned host memory: possibility of
demand paging -> staging buffers

Pinned host memory: autonomous
device access possible

cudaMemcpy

GPU DMA engine(s)

Zero copy (CC >= 2.0)

GPU threads can operate on pinned
host memory

For initial shared memory fills, 
etc.

12

CPU
SOCKETCPU
CORES

NORTH
BRIDGE

HOST
MEMOR

IO
BRIDGE

GPU
CORES

GPU
MEMOR

system request
queue

system interface

peripheral
interface

memory
interface

memory
interface

16GB/

16GB/

1,165 GFLOPS

288GB/S

60GB/S

96 GFLOPS

HOST MEMORY & CUDAMEMCPY

13

HOST MEMORY & STREAMS

Stream: sequence of operations
performed in-order

cudaMemcpy

Kernel launch

Default stream: id=0

Overlap computation with data
movement

Latency hiding

Only applicable for divisible work

Most suited for compute-bound workloads

See also zero-copy for initial data movements

14

GLOBAL MEMORY - COALESCING
High bandwidth, high latency

Coalesced access

Combine fine-grain accesses by multiple
threads into single GDDR operations (such
requests have a certain granularity)

Coalesced thread access should match a
multiple of L1/L2 cache line sizes

For Kepler cache line sizes: L1: 128B, L2: 32B

Misaligned accesses

One warp is scheduled, but accesses
misaligned addresses

GPUs use caches for access coalescing

15

0 1 2 3 4 5 6Threads

GDDR

Memory Controller

GLOBAL MEMORY – ACCESS PENALTIES
Offset: constant shift
of access pattern

data[addr+offset]

Penalty: fetch 5 CLs
instead of 4

4/5 of max. bandwidth

16NVIDIA, CUDA C Best Practices Guide8 elements offset, 4B per element

0 1 2 3 4 5 6Threads

Mem

Offset=0
Offset=1

GLOBAL MEMORY – ACCESS PENALTIES

17NVIDIA, CUDA C Best Practices Guide

Stride: access only
every nth address

data[addr*stride]

Stride of 2

50% load/store
efficiency

Worsens with larger
strides

GLOBAL MEMORY – ACCESS PENALTIES

Main problem: thread scheduling does not result in coalesced
accesses

Solution: manually control data movement in memory hierarchy

Caches = transparent, implicit hierarchy

Scratchpad (shared memory) = opaque, explicit hierarchy

Collaborative loads from global memory to shared memory

Common case: one thread is not moving the data it requires (at least not
immediately)

One of the GPU’s main advantages is memory bandwidth: coalescing of upmost
importance!

18

CUDA THREAD SCHEDULING

Foundation of latency tolerance

LATENCY TOLERANCE TECHNIQUES

20

Property Relaxed Consistency Models Prefetching Multi-Threading Block Data
Transfer

Types of
latency

tolerated

Write (blocking read processors)

Read and write (dynamically

scheduled processors)

Write

Read

Write

Read

Synchronization

Write

Read

Software
requirements

Labeling synchronization
operations Predictability Explicit extra

concurrency

Identifying and
orchestrating

block transfers

Extra
hardware
support

Little Little Substantial
Not in processor,
but in memory

system

Supported in
commercial

systems?
Yes Yes Yes (Yes)

David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A Hardware/Software Approach,
Morgan Kaufmann,1998

THREAD SCHEDULING
Up to 1k threads per block

One block executes on one SM

Kepler: one SM = 192 SP + 64 DP units

Each thread block is divided in
warps of 32 threads

Implementation decision, not CUDA

Warps are the units for the
scheduler

Example

4 blocks being executed on one SM,
each block 1k threads

How many warps?

Scheduler

1.Select one thread block to execute,
allocate resources (registers, etc) as
required

2.Select one out of the 32 warps of
this block for instruction fetch and
execution

3.Repeat until all resources are
utilized

4.Upon warp stalling, select another
warp for IF and EX

5.Deallocate resources after all warps
have finished (non-preemptive)

21

THREAD SCHEDULING
Fine-grained multi-threading (FGMT)

Switch context (i.e., warp) every cycle

A warp that has the operands ready for its next instruction is ready for execution

All threads in a warp execute the same instruction

Goal of FGMT: latency hiding

Global memory access latency: ~400-600 cycles

Sufficient number of warps can keep all functional units busy

Warp count for maximum utilization depends on computational intensity

22

TB1
W1

TB = Thread Block, W = Warp

TB2
W1

TB3
W1

TB2
W1

TB1
W1

TB3
W2

TB1
W2

TB1
W3

TB3
W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

EXAMPLE FOR HARDWARE MULTI-THREADING
(G80)

4 warp contexts, max. 1 being executed
simultaneously

Explicit 32x SIMD instructions

32 ALUs execute a single SIMD instruction

Register file (RF) is shared among contexts

One register entry (vector) has 32 words (each
32bit)

RF: 16 entries -> Max. of 4 registers/warp

Simplifying assumptions

Each memory access blocks execution for 50
cycles

A memory access occurs every 20 cycles

23

3130

210

32 SIMD ALUs

0 1
5

RF

T0 T1 T2 T3

Thread Warp Contexts

EXAMPLE FOR HARDWARE MULTI-THREADING
(G80)

Each memory access blocks execution for 50 cycles
(texture memory)

A memory access occurs every 20 cycles

-> 4 thread warps required for full utilization

-> Per thread warp 32 entities = 128 entities

24

3130

210

32 SIMD ALUs

0 1
5

RF

T0 T1 T2 T3

Thread Warp Contextsexec
stall

w
aiting

T0 T1 T2 T30

20

40

60

80

THREAD SCHEDULING (KEPLER)
Fetch one instruction per cycle
(from I$)

Determine dependencies (operands)

Scoreboard checks if dependencies
are resolved

Prevent data hazards

Issue: select one warp based on
prioritized round-robin

Priority: warp age

Scheduler broadcasts the
instruction to all 32 threads in a
warp

25

Warp Scheduler

Instruction Dispatch UnitInstruction Dispatch Unit

Warp 4 Instruction 12 Warp 4 Instruction 13

Warp 12 Instruction 94 Warp 12 Instruction 95

Warp 7 Instruction 0 Warp 7 Instruction 1

Warp 4 Instruction 14 Warp 4 Instruction 15

Warp 3 Instruction 42 Warp 3 Instruction 42

ti
m

e

… …

THREAD SCHEDULING - SCOREBOARD
Scoreboard: hardware table that tracks

Instructions (fetched, issued, executed)

Resources/Functional units (occupation)

Dependencies (operands)

Outputs (modified registers)

Tracks all operands of all instructions in the instruction buffer

Any thread can proceed until scoreboard prevents issue

OOO execution among warps

Unfeasible without warp abstraction (32x less issue slots required)

Scoreboard: old concept from 1960s

Separate computation and memory resources

CDC6600 (https://en.wikipedia.org/wiki/CDC_6600)

Enabler of OOO execution for CPUs

26

wikipedia.org

https://en.wikipedia.org/wiki/CDC_6600

THREAD SCHEDULING – BRANCH DIVERGENCE
Scheduler broadcasts the instruction to all 32 threads in a warp

Dedicated control paths

Branch divergence problem

-> Write-masks

27

__global__ kernel1 (…)

{

 id = threadIdx.x;

 if (id % 32 == 0)

 out = complex_function_call();

 else

 out = 0;

}

__global__ kernel2 (…)

{

 id = threadIdx.x;

 if (id < 32)

 out = complex_function_call();

 else

 out = 0;

}

SUMMARY

SUMMARY
GPUs have manually-controlled,
rather flat memory hierarchies

CPUs = deep memory hierarchy

Caches in GPUs not used to reduce
latency, but to reduce memory
contention and to coalesce
accesses

Parallel slackness as in BSP

Latency hiding & scalability

Instruction stream == thread
warp, != single thread (as for CPUs)

Global memory subsystem

Fully featured memory subsystem,
including virtual addresses, MMU
and TLB

Performance issues

Latency hiding: insufficient number
of threads

Too many threads: register spilling

Coalescing issues (global memory):
stride and offset

Branch divergence

29

BONUS: ADVANCED MEMORY ANALYSIS

POINTER CHASING: MEMORY/CACHE ANALYSIS

31Source: Vasily Volkov, James W. Demmel: LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs, LAPACK Working Note 202

GeForce 8800 GTX @ 1350MHz

POINTER CHASING: MEMORY/CACHE ANALYSIS

32Source: Vasily Volkov, James W. Demmel: LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs, LAPACK Working Note 202

GeForce 8800 GTX @ 1350MHz

L1 cache latency,
5kB size (latency

increase for 5.5kB)

@32B, L1 & L2
saturation: CL size

= 32B

20kB@1kB, L1 cache
latency reverts: 20-
way set-associative

128MB latency
increase: TLB

presence

@512kB: saturation
of TLB misses:

page size=512kB

128MB@8MB stride,
no overhead: 16-

entry, fully-
associative TLB

768kB@32kB, L2 cache
latency reverts: 24-
way set-associative

Ambiguous: or 6
replicated 4-way L2s

