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GK110 - ARCHITECTURE 
Up to 15 SMX, 6 MCs, 
L2 cache, PCIe 3.0, 
CC 3.5
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GK110 - ARCHITECTURE 

192 SP units


64 DP units


32 load/store units


32 special function units


4 warp schedulers


Optimized for performance/watt

-> reduced clock frequency


Pollack’s law:  S ∝ 2 complexity
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BULK-SYNCHRONOUS PARALLEL



REMINDER: BULK-SYNCHRONOUS PARALLEL
In 1990, Valiant already described GPU computing 
pretty well


Superstep

Compute, communicate, synchronize


Parallel slackness: # of virtual processors v, physical 
processors p


v = 1: not viable


v = p: unpromising wrt optimality


v >> p: leverage slack to schedule and pipeline computation 
and communication efficiently


Extremely scalable, bad for unstructured parallelism
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Leslie G. Valiant, A bridging model for 
parallel computation, Communications of 

the ACM, Volume 33 Issue 8, Aug. 1990



REMINDER: VECTOR ISAS
Compact: single instruction defines N operations


Amortizes the cost of instruction fetch/decode/issue


Also reduces the frequency of branches


Parallel: N operations are (data) parallel

No dependencies  


No need for complex hardware to detect parallelism  
(similar to VLIW)


Can execute in parallel assuming N parallel data paths


Expressive: memory operations describe patterns

Continuous or regular memory access pattern


Can prefetch or accelerate using wide/multi-banked memory


Can amortize high latency for 1st element over large sequential pattern
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OUR VIEW OF A GPU
Software view: a programmable many-core scalar architecture


Huge amount of scalar threads to exploit parallel slackness, operates in lock-step


SIMT: single instruction, multiple threads


IT’S A (ALMOST) PERFECT INCARNATION OF THE BSP MODEL


Hardware view: a programmable multi-core vector architecture

Illusion of scalar threads: hardware packs them into compound units


SIMD: single instruction, multiple data


IT’S A VECTOR ARCHITECTURE THAT HIDES ITS VECTOR UNITS
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THE BEAUTY OF SIMPLICITY
GPU Computing & CUDA


Thread-collective computation and memory accesses


SIMT – Single Instruction, Multiple Threads


GPU collaborative computing

One thread per output element


Schedulers exploit parallel slack


GPU collaborative memory access

One thread per data element


MCs highly optimized to exploit concurrency


-> coalescing issues


-> If you do something on a GPU, do it collaboratively with all 
threads
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(GLOBAL) MEMORY SUBSYSTEM



Thread

Thread 
Block

Multiple 
Kernels

Registers

64k/thread block

Shared Memory

16-48kB

L1 Cache

16-48kB

Read-only data 
Cache 48kB

L2 Cache

1.5MB

GDDR (off-chip)

6GB

Host memory (off-device)

multiple TBs

GK110 – MEMORY HIERARCHY 
Registers at thread level


Registers/thread depends on run-time 
configuration


Max. 255 registers/thread


Shared memory / L1$ at block level

Variable sizes


L1$ can serve for register spilling


L1$ not coherent, write-invalidate


Compiler controlled RO L1$


L2$ / GDDR at device level

GDDR: ~400-600 cycles access latency


L2$ as victim cache for all upper units, 
write-back


Purpose: reducing contention
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Thread

Thread 
Block

Multiple 
Kernels

Registers

64k/thread block

Shared Memory

16-48kB

L1 Cache

16-48kB

Read-only data 
Cache 48kB

L2 Cache

1.5MB

GDDR (off-chip)

6GB

Host memory (off-device)

multiple TBs

LOCAL MEMORY 
Local memory: part of global memory, but 
thread-local


Register spilling: when SM runs out of 
resources


Limited register count per thread 


Limited total number of registers


LM is used if the source code exceeds these 
limits


Local because each thread has its private 
area


Differences from global memory

Stores are cached in L1$


Addressing is resolved by compiler


Store always happens before load

Per thread: move data from GM to LM (stores)


Subsequent load accesses
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HOST MEMORY
Pinned/unpinned host memory


Unpinned host memory: possibility of 
demand paging -> staging buffers


Pinned host memory: autonomous 
device access possible


cudaMemcpy

GPU DMA engine(s)


Zero copy (CC >= 2.0)

GPU threads can operate on pinned 
host memory


For initial shared memory fills, 
etc.
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HOST MEMORY & CUDAMEMCPY 
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HOST MEMORY & STREAMS

Stream: sequence of operations 
performed in-order


cudaMemcpy


Kernel launch


Default stream: id=0


Overlap computation with data 
movement


Latency hiding


Only applicable for divisible work


Most suited for compute-bound workloads

See also zero-copy for initial data movements
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GLOBAL MEMORY - COALESCING 
High bandwidth, high latency


Coalesced access

Combine fine-grain accesses by multiple 
threads into single GDDR operations (such 
requests have a certain granularity)


Coalesced thread access should match a 
multiple of L1/L2 cache line sizes


For Kepler cache line sizes: L1: 128B, L2: 32B


Misaligned accesses

One warp is scheduled, but accesses 
misaligned addresses


GPUs use caches for access coalescing
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GLOBAL MEMORY – ACCESS PENALTIES
Offset: constant shift 
of access pattern


data[addr+offset]


Penalty: fetch 5 CLs 
instead of 4 


4/5 of max. bandwidth

16NVIDIA, CUDA C Best Practices Guide8 elements offset, 4B per element
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GLOBAL MEMORY – ACCESS PENALTIES 

17NVIDIA, CUDA C Best Practices Guide

Stride: access only 
every nth address


data[addr*stride]


Stride of 2

50% load/store 
efficiency


Worsens with larger 
strides



GLOBAL MEMORY – ACCESS PENALTIES 

Main problem: thread scheduling does not result in coalesced 
accesses


Solution: manually control data movement in memory hierarchy

Caches = transparent, implicit hierarchy


Scratchpad (shared memory) = opaque, explicit hierarchy


Collaborative loads from global memory to shared memory

Common case: one thread is not moving the data it requires (at least not 
immediately)


One of the GPU’s main advantages is memory bandwidth: coalescing of upmost 
importance!
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CUDA THREAD SCHEDULING 

Foundation of latency tolerance



LATENCY TOLERANCE TECHNIQUES
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Property Relaxed Consistency Models Prefetching Multi-Threading Block Data 
Transfer

Types of 
latency 

tolerated

Write (blocking read processors)

Read and write (dynamically 

scheduled processors)

Write

Read

Write

Read


Synchronization

Write

Read

Software 
requirements

Labeling synchronization 
operations Predictability Explicit extra 

concurrency

Identifying and 
orchestrating 

block transfers

Extra 
hardware 
support

Little Little Substantial
Not in processor, 
but in memory 

system

Supported in 
commercial 

systems?
Yes Yes Yes (Yes)

David E. Culler, Jaswinder Pal Singh, Anoop Gupta, Parallel Computer Architecture: A Hardware/Software Approach, 
Morgan Kaufmann,1998



THREAD SCHEDULING
Up to 1k threads per block


One block executes on one SM


Kepler: one SM = 192 SP + 64 DP units


Each thread block is divided in 
warps of 32 threads


Implementation decision, not CUDA


Warps are the units for the 
scheduler


Example

4 blocks being executed on one SM, 
each block 1k threads


How many warps?


Scheduler

1.Select one thread block to execute, 
allocate resources (registers, etc) as 
required


2.Select one out of the 32 warps of 
this block for instruction fetch and 
execution


3.Repeat until all resources are 
utilized


4.Upon warp stalling, select another 
warp for IF and EX


5.Deallocate resources after all warps 
have finished (non-preemptive)
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THREAD SCHEDULING 
Fine-grained multi-threading (FGMT)


Switch context (i.e., warp) every cycle


A warp that has the operands ready for its next instruction is ready for execution


All threads in a warp execute the same instruction


Goal of FGMT: latency hiding

Global memory access latency: ~400-600 cycles


Sufficient number of warps can keep all functional units busy


Warp count for maximum utilization depends on computational intensity
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EXAMPLE FOR HARDWARE MULTI-THREADING 
(G80)

4 warp contexts, max. 1 being executed 
simultaneously


Explicit 32x SIMD instructions

32 ALUs execute a single SIMD instruction


Register file (RF) is shared among contexts

One register entry (vector) has 32 words (each 
32bit)


RF: 16 entries -> Max. of 4 registers/warp


Simplifying assumptions

Each memory access blocks execution for 50 
cycles


A memory access occurs every 20 cycles
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EXAMPLE FOR HARDWARE MULTI-THREADING 
(G80)

Each memory access blocks execution for 50 cycles 
(texture memory)


A memory access occurs every 20 cycles


-> 4 thread warps required for full utilization


-> Per thread warp 32 entities = 128 entities
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THREAD SCHEDULING (KEPLER)
Fetch one instruction per cycle 
(from I$)


Determine dependencies (operands)


Scoreboard checks if dependencies 
are resolved


Prevent data hazards


Issue: select one warp based on 
prioritized round-robin


Priority: warp age


Scheduler broadcasts the 
instruction to all 32 threads in a 
warp
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Warp Scheduler
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THREAD SCHEDULING - SCOREBOARD 
Scoreboard: hardware table that tracks 


Instructions (fetched, issued, executed)


Resources/Functional units (occupation)


Dependencies (operands)


Outputs (modified registers)


Tracks all operands of all instructions in the instruction buffer

Any thread can proceed until scoreboard prevents issue


OOO execution among warps


Unfeasible without warp abstraction (32x less issue slots required)


Scoreboard: old concept from 1960s

Separate computation and memory resources


CDC6600 (https://en.wikipedia.org/wiki/CDC_6600)


Enabler of OOO execution for CPUs
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wikipedia.org

https://en.wikipedia.org/wiki/CDC_6600


THREAD SCHEDULING – BRANCH DIVERGENCE 
Scheduler broadcasts the instruction to all 32 threads in a warp


Dedicated control paths


Branch divergence problem


-> Write-masks
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__global__ kernel1 (…)

{

  id = threadIdx.x;


  if ( id % 32 == 0 )

    out = complex_function_call();

  else

    out = 0;

}

__global__ kernel2 (…)

{

  id = threadIdx.x;


  if ( id < 32 )

    out = complex_function_call();

  else

    out = 0;

}



SUMMARY



SUMMARY
GPUs have manually-controlled, 
rather flat memory hierarchies


CPUs = deep memory hierarchy


Caches in GPUs not used to reduce 
latency, but to reduce memory 
contention and to coalesce 
accesses


Parallel slackness as in BSP

Latency hiding & scalability


Instruction stream == thread 
warp, != single thread (as for CPUs)


Global memory subsystem

Fully featured memory subsystem, 
including virtual addresses, MMU 
and TLB


Performance issues

Latency hiding: insufficient number 
of threads


Too many threads: register spilling


Coalescing issues (global memory): 
stride and offset


Branch divergence
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BONUS: ADVANCED MEMORY ANALYSIS



POINTER CHASING: MEMORY/CACHE ANALYSIS

31Source: Vasily Volkov, James W. Demmel: LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs, LAPACK Working Note 202

GeForce 8800 GTX @ 1350MHz



POINTER CHASING: MEMORY/CACHE ANALYSIS

32Source: Vasily Volkov, James W. Demmel: LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs, LAPACK Working Note 202

GeForce 8800 GTX @ 1350MHz

L1 cache latency, 
5kB size (latency 

increase for 5.5kB)

@32B, L1 & L2 
saturation: CL size 

= 32B

20kB@1kB, L1 cache 
latency reverts: 20-
way set-associative

128MB latency 
increase: TLB 

presence

@512kB: saturation 
of TLB misses: 

page size=512kB

128MB@8MB stride, 
no overhead: 16-

entry, fully-
associative TLB

768kB@32kB, L2 cache 
latency reverts: 24-
way set-associative

Ambiguous: or 6 
replicated 4-way L2s


