
GPU COMPUTING

LECTURE 04 - SHARED MEMORY

OPTIMIZATIONS
Kazem Shekofteh

Kazem.shekofteh@ziti.uni-heidelberg.de

Institute of Computer Engineering

Ruprecht-Karls University of Heidelberg

Inspired from lectures by Holger Fröning

SEQUENTIAL NAIVE VERSION
Why always Matrix Multiply?

Often used

Heavily optimized

Interesting access patterns

Good mixture of sufficient complexity but still simple
enough for a comprehensive understanding

Finally, it’s an important operation!

Used in many applications as computational kernel

In particular for sparse matrix operations

Here: for dense matrices

Experiments and learning

High sustained/peak ratio

Test system/compiler/OS

Note on notation

M[row,column] = M[row][column]

Analogous to C

2

PM

N

M[m,n]

N[n,k]

P[m,k]

ANALYSIS
Assumptions

Assume square matrices

Assume perfect write-through cache (no issues with
conflict or capacity)

Number of flops: f = 2*N3

N² elements in C, each N steps, each step: multiply &
add

Number of unique memory accesses: munique = 3*N2

Assuming perfect caching

Load from A,B,C, store to C

Counting all accesses (RW): mall = 4*N3

Computational intensity

r = f/m = f/munique = 2N3/3N2= O(N)

Computationally intensive (if perfect caching)

Peak performance expected for cache-based processor

3

PM

N

M[N,N]

N[N,N]

P[N,N]

OPTIMIZING MATRIX MULTIPLY FOR A CPU

Or: how to program a cache

MATRIX MULTIPLY – CPU NAIVE

CPU sequential version

No big surprises

Can be called directly

5

void MatrixMulOnHost (float* M, float* N,

 float* P, int Width)

{

 for (int i = 0; i < Width; ++i)

 {

 for (int j = 0; j < Width; ++j)

 {

 float sum = 0;

 for (int k = 0; k < Width; ++k)

 {

 float a = M[i * width + k];

 float b = N[k * width + j];

 sum += a * b;

 }

 P[i * Width + j] = sum;

 }

 }

}

MATRIX MULTIPLY – CPU NAIVE
Performance for single-threaded CPU run

Single precision (float, SP)

Xeon E5 Sandy Bridge

4 cores @ 2.4GHz (76.8 GFLOP/s peak)

High performance until 1500x1500
elements?

Fits in cache (10MB) – capacity!

(1.5k elements)2 x 4B (float) = 9MB/matrix

(2k elements)2 x 4B (float) = 16MB/matrix

Reason for drops @ 512 and 1024 though?

Evictions due to conflicts

6

MATRIX MULTIPLY – CPU TILED/BLOCKED

Addition is associative

a + (b + c) = (a + b) + c

So feel free to reorder multiply
operations

Goal: increase cache hit rate

Block size is architecture-
dependent parameter

Cache size

7

PM

N

MATRIX MULTIPLY – CPU BLOCKED

8

void MatrixMulOnHost (float* M, float* N, float* P, long Width, long blockSize)

{

 for (long ii = 0; ii < matWidth; ii += blockSize) {

 for (long jj = 0; jj < matWidth; jj += blockSize) {

 for (long kk = 0; kk < matWidth; kk += blockSize) {

 for (int i = ii; i < min(ii+blockSize, matWidth); ++i) {

 for (int j = jj; j < min(jj+blockSize, matWidth); ++j) {

 float sum = 0;

 for (int k = kk; k < Width; ++k) {

 float a = M[i * width + k];

 float b = N[k * width + j];

 sum += a * b;

 }

 P[i * Width + j] += sum;

 }

 }

 }

 }

 }

}

min only relevant if matWidth is
not a full multiple of blockSize

MEMORY ACCESS PATTERN
Trace for naive implementation
 Trace for blocks of two-by-two

9

..

<snip>

..

P[3][2] += M[3][0] * N[0][2]

P[3][2] += M[3][1] * N[1][2]

P[3][2] += M[3][2] * N[2][2]

P[3][2] += M[3][3] * N[3][2]

..

P[3][3] += M[3][0] * N[0][3]

P[3][3] += M[3][1] * N[1][3]

P[3][3] += M[3][2] * N[2][3]

P[3][3] += M[3][3] * N[3][3]

..

<snip>

..

..

<snip>

..

P[3][2] += M[3][0] * N[0][2]

P[3][2] += M[3][1] * N[1][2]

P[3][3] += M[3][0] * N[0][3]

P[3][3] += M[3][1] * N[1][3]

..

P[3][2] += M[3][2] * N[2][2]

P[3][2] += M[3][3] * N[3][2]

P[3][3] += M[3][2] * N[2][3]

P[3][3] += M[3][3] * N[3][3]

..

<snip>

..

No locality - RED Spatial locality - RED Temporal locality - RED

PERFORMANCE ANALYSIS
Performance for single-threaded CPU run

Xeon E5 Sandy Bridge

4 cores @ 2.4GHz

Single precision

Varying matrix sizes [elements per dimension]

Block size 0 = non-blocked (reference)

Huge drop for block size of 1?

Control flow overhead

Non-blocked better than blocked?

Cache size!

Factor of 5-10x for blocked vs. non-blocked
typical

10

MATRIX MULTIPLY FOR A GPU

INITIAL GPU VERSION

GPU version

Kernel only, data movement
& control is missing

Notice the “d”-suffix!

Two outer loops are missing

Handled instead by a 2D
thread array

Per loop

2 FLOPS

4 memory accesses

12

// Matrix multiplication kernel – thread code

__global__ void MatrixMulKernel (float* Md,

 float* Nd,

 float* Pd,

 int Width)

{

 float Pvalue = 0; // intermediate result

 float Melement, Nelement;

 for (int k = 0; k < Width; ++k) {

 Melement = Md[threadIdx.y * Width + k];

 Nelement = Nd[k * Width + threadIdx.x];

 Pvalue += Melement * Nelement;

 }

 Pd[threadIdx.y * Width + threadIdx.x] = Pvalue;

}

INITIAL GPU VERSION

13

void MatrixMulOnDevice (float* M, float* N, float* P, int Width)

{

 int size = Width * Width * sizeof(float);

 float* Md, Nd, Pd;

 ...

 // Allocate and Load M, N to device memory

 cudaMalloc (&Md, size);

 cudaMemcpy (Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc (&Nd, size);

 cudaMemcpy (Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device

 cudaMalloc (&Pd, size);

 // Setup the execution configuration

 dim3 dimGrid (1, 1);

 dim3 dimBlock (Width, Width);

 MatrixMulKernel <<< dimGrid, dimBlock >>> (Md, Nd, Pd, Width);

 // Read P from the device

 cudaMemcpy (P, Pd, size, cudaMemcpyDeviceToHost);

 // Free device matrices

 cudaFree (Md); cudaFree (Nd); cudaFree (Pd);

}

MATRIX MULTIPLY – QUICK ANALYSIS
A single thread block computes Pd

Each thread computes a  
single element of Pd

Load a row of Md

Load a column of Nd

Per element: one multiplication, one add

Write Pd

Issue 1: Matrix size limited by threads/block

Issue 2: Compute/Memory ratio

(= Computational intensity)

No cache => m = mall = 4N3

r = f/m = 2N3/4N3 = 1/2 (very low)

In FLOPS/Byte even worse: 2 FLOPS vs 16 Bytes =
1/8 (horrible)

14

PdMd

Nd

… gr
id

MULTIPLE THREAD BLOCKS

Multiple thread blocks, 
organized in a 2D array

Each block:

Consists of (TILE_WIDTH)2 threads

Computes (TILE_WIDTH)2 sub-matrix

Resulting grid

(WIDTH/TILE_WIDTH)2 blocks

Limited by max grid size

15

PdMd

… gr
id

Nd

grid = 3x3 blocks

MULTIPLE THREAD BLOCKS

16

// Matrix multiplication kernel – thread code

__global__ void MatrixMulKernel (float* Md,

 float* Nd,

 float* Pd,

 int Width)

{

 float Pvalue = 0; // intermediate result

 float Melement, Nelement;

 // Calculate the row index of the Pd element

 int row = blockIdx.y * blockDim.y + threadIdx.y;

 // Calculate the column index of the Pd element

 int col = blockIdx.x * blockDim.x + threadIdx.x;

 for (int k = 0; k < Width; ++k) {

 Melement = Md[row * Width + k];

 Nelement = Nd[k * Width + col];

 Pvalue += Melement * Nelement;

 }

 Pd[row * Width + col] = Pvalue;

}

ANALYSIS
RTX 2080 GPU, Turing-class

Scheduling: varying the number of
threads per block

1k x 1k matrix size

Match block count

In general: “more threads are better”,
but not always like this -> e.g. register
pressure

Calculating FLOP/s

N2 elements, each 2N FLOPS, 2N3 FLOPs
total

Here: 2.14 GFLOPS total

Without data movement

17

G
FL

O
P/

s

0

300

600

900

1200

1500

Ti
m

e
[m

s]

0

40

80

120

160

200

Threads per Block

1 16 49 10
0

16
9

25
6

36
1

48
4

62
5

78
4

96
1

10
24

plain Time [ms]
plain GFLOP/s

ANALYSIS - UPPER BOUND?

18

Model
CC

Revi-
sion

Total
global

memory
[bytes]

Multi-
proces

sors
Cores

Total
constant
memory
[bytes]

Shared
memory

per
block

[bytes]

Regis-
ters
per

block

Warp
size

Threads
per

block

Max
dimen-
sion of
a block

Max.
dimen-
sion of
a grid

Max.
memory

pitch
[bytes]

Clock
rate

[GHz]

Concurrent
copy and
execution

GeForce
GTX 480 2,0 1.5G 15 480 64k 48k 32k 32 1k 1k x 1k

x 64

65535
x

65535
x

65535

2G 1,4 Y

1

Tesla
K20c 3,5 5G 13 2496 64k 48k 64k 32 1k 1k x 1k

x 64

2G x
65535

x
65535

2G 0,7 Y

2

RTX
2080Ti 7,5 11G 68 4352 64k 48k 64k 32 1k 1k x 1k

x 64

2G x
65535

x
65535

2G 1,54 Y

3

For single precision: 4352 * 1.54 * 2 = 13,404.16 GFLOP/s (clock boost)

ANALYSIS - UPPER BOUND?

Each thread works on global memory

2 32bit accesses per SP Multiply-Add

4B per FLOP

=> 13 TFLOPs require 52 TB/s memory bandwidth

RTX 2080Ti: 352bit * 1750MHz (14 Gbps effective) (GDDR6) = 616 GB/s

Memory bandwidth limits performance to ~150 GFLOP/s

GPU caches?

-> Increase flop/memory ratio!

-> Similar to blocking, but this time we have to define reuse manually

19

SHARED MEMORY OPTIMIZATIONS

SHARED MEMORY
On-chip memory

Lifetime: thread lifetime

Access costs in the best case
equal register access

Organized in n banks

Typ. 16-32 banks with 32bit
width

Low-order interleaving

Parallel access if no conflict

Conflicts result in access
serialization

21

Grid

Host

Block

Shared memory

Registers Registers

Thread
(0,0)

Thread
(0,1)

Block

Shared memory

Registers Registers

Thread
(0,0)

Thread
(0,1)

Global memory

0 1 2 3 4 5 6Threads

ShMem

SHARED MEMORY BANK CONFLICTS
Shared memory bank

access without blocking

Shared memory bank
access with blocking

Multi- and broadcast
meantime supported

22

T0

T1

T2

T3

T4

T5

T6

T7

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

T0

T1

T2

T3

T4

T5

T6

T7

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

T0

T1

T2

T3

T4

T5

T6

T7

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

T0

T1

T2

T3

T4

T5

T6

T7

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

stride=1 stride=3 stride=2 stride=4

T0

T1

T2

T3

T4

T5

T6

T7

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

T0

T1

T2

T3

T4

T5

T6

T7

Bank 0

Bank 1

Bank 2

Bank 3

Bank 4

Bank 5

Bank 6

Bank 7

bcast 2x mcast

TILING/BLOCKING
Associativity of C = A * B

Resorting the summation of the pair-
wise products

Increase locality by reordering
memory accesses

=> Tiling or blocking

Each TxT tile uses each element T times

Calculate only parts of the elements
of C, so that access pattern has high
locality

Beneficial for both sequential and
parallel algorithms

23

C0,0 C1,0 C0,1 C1,1

B0,0 * A0,0 B0,0 * A1,0 B0,1 * A0,0 B0,1 * A1,0

B1,0 * A0,1 B1,0 * A1,1 B1,1 * A0,1 B1,1 * A1,1

B2,0 * A0,2 B2,0 * A1,2 B2,1 * A0,2 B2,1 * A1,2

B3,0 * A0,3 B3,0 * A1,3 B3,1 * A0,3 B3,1 * A1,3

ti
m

e

MATRIX MULTIPLY - SHARED MEMORY
Old: each input element is being
read by TILE_WIDTH threads

New: is read by one thread, but
used by multiple threads

Size of a sub-set should match a tile
size

Separate kernel execution into
phases

1. Fill shared memory

2. Execute

3. Repeat

24

PdMd

Nd

grid = 3x3 blocks

TI
LE

_W
ID

TH

SHARED MEMORY - PHASES FOR 2X2 TILE

25

T0,0 T1,0 T0,1 T1,1

Md0,0 —> Mds0,0 Md1,0 —> Mds1,0 Md0,1 —> Mds0,1 Md1,1 —> Mds1,1

Nd0,0 —> Nds0,0 Nd1,0 —> Nds1,0 Nd0,1 —> Nds0,1 Nd1,1 —> Nds1,1

PdValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

PdValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

Md2,0 —> Mds0,0 Md3,0 —> Mds1,0 Md2,1 —> Mds0,1 Md3,1 —> Mds1,1

Nd0,2 —> Nds0,0 Nd1,2 —> Nds1,0 Nd0,3 —> Nds0,1 Nd1,3 —> Nds1,1

PdValue0,0 +=
Mds0,0*Nds0,0 +
Mds1,0*Nds0,1

PdValue1,0 +=
Mds0,0*Nds1,0 +
Mds1,0*Nds1,1

PdValue0,1 +=
Mds0,1*Nds0,0 +
Mds1,1*Nds0,1

PdValue1,1 +=
Mds0,1*Nds1,0 +
Mds1,1*Nds1,1

… … … …

ti
m

e

Ph
as

e
1

}

Ph
as

e
2

}

Ph
as

e
1

}

Ph
as

e
2

}

NEW FLOP/MEMORY RATIO
Assuming a TILE_WIDTH of 16 and
a 1k x 1k matrix

256 threads per block

1k/16 => 64 x 64 blocks

Each block

2 loads per thread = 512 loads

16 MADDs per thread = 8k flops

New flop/memory ratio

8k:512 = 16:1

16 FLOPS : 4 Bytes = 4 (good!)

Plus improved coalescing

26

PdMd

Nd

TI
LE

_W
ID

TH

SHARED MEMORY IMPLEMENTATION

27

__global__ void MM_SM (float* Md, float* Nd, float* Pd, int Width)

{

 __shared__ float Mds [TILEWIDTH] [TILEWIDTH];

 __shared__ float Nds [TILEWIDTH] [TILEWIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;

 int tx = threadIdx.x; int ty = threadIdx.y;

 int row = by * TILEWIDTH + ty;

 int col = bx * TILEWIDTH + tx;

 float Pvalue = 0;

 if !(Row > Width || Col > Width) {

 for (int m = 0; m < Width / TILEWIDTH; ++m) { // loop over tiles

 // Collaborative loading of Md and Nd tiles into shared memory

 Mds [ty] [tx] = Md [row * Width + (m * TILEWIDTH + tx)];

 Nds [ty] [tx] = Nd [col + (m * TILEWIDTH + ty) * Width];

 __syncthreads();

 for (int k = 0; k < TILEWIDTH; ++k)

 Pvalue += Mds[ty][k] * Nds[k][tx];

 __syncthreads ();

 }

 Pd[row * Width + col] = Pvalue;

 }

}

Something is
missing here!

SHARED MEMORY IMPLEMENTATION

28

__global__ void MM_SM (float* Md, float* Nd, float* Pd, int Width)

{

 __shared__ float Mds [TILEWIDTH] [TILEWIDTH];

 __shared__ float Nds [TILEWIDTH] [TILEWIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;

 int tx = threadIdx.x; int ty = threadIdx.y;

 int row = by * TILEWIDTH + ty;

 int col = bx * TILEWIDTH + tx;

 float Pvalue = 0;

 if !(Row > Width || Col > Width) {

 for (int m = 0; m < Width / TILEWIDTH; ++m) { // loop over tiles

 // Collaborative loading of Md and Nd tiles into shared memory

 Mds [ty] [tx] = Md [row * Width + (m * TILEWIDTH + tx)];

 Nds [ty] [tx] = Nd [col + (m * TILEWIDTH + ty) * Width];

 __syncthreads();

 for (int k = 0; k < TILEWIDTH; ++k)

 Pvalue += Mds[ty][k] * Nds[k][tx];

 __syncthreads ();

 }

 Pd[row * Width + col] = Pvalue;

 }

}

Dependencies resolved
using synchronization

SHARED MEMORY RESULTS
Performance comparison for RTX
2080

Tiled only

Use of shared memory

Block size <= 1k

Both code optimizations and kernel
launch configuration matters!

Still a gap of about 10x to peak
performance

Note: GPU’s L1 cache was turned
off

29

G
FL

O
P/

s

0

300

600

900

1200

1500

Ti
m

e
[m

s]

0

40

80

120

160

200

Threads per Block

1 16 49 10
0

16
9

25
6

36
1

48
4

62
5

78
4

96
1

10
24

plain Time [ms]
plain GFLOP/s
shmem Time [ms]
shmem GFLOP/s

POSSIBLE FURTHER OPTIMIZATIONS
Multiple output values per thread

Reduces the pressure on shared memory as tile data can be used in multiple calculations

ILP optimization

Bank conflicts in shared memory

Use nvprof to find out about such conflicts

Vectorize shared memory loads and stores by using compound data types

float2/float4

Effective shared memory bandwidth should increase

Double buffering by overlapping shared memory load for first set while
second set is computed

Effective latency hiding

Requirements on shared memory capacity double

30

THREE TYPES OF DEPENDENCIES

RAW: true or data dependency

True dependency, so only solvable using synchronization, see (1)

WAR: anti dependency

Is a name dependency, solvable using synchronization or renaming, see (2)

WAW: output dependency

Is a name dependency, solvable using synchronization or renaming, n.a. here

31

<snip>

 for (int m = 0; m < Width / TILEWIDTH; ++m) { // loop over tiles

 // Collaborative loading of Md and Nd tiles into shared memory

 Mds [ty] [tx] = Md [row * Width + (m * TILEWIDTH + tx)];

 Nds [ty] [tx] = Nd [col + (m * TILEWIDTH + ty) * Width];

 __syncthreads();

 for (int k = 0; k < TILEWIDTH; ++k)

 Pvalue += Mds[ty][k] * Nds[k][tx];

 __syncthreads ();

 }

<snip>

1

2

SHARED MEMORY ALLOCATIONS

32

__global__ void MM_SM (float* Md, float* Nd, float* Pd, int Width)

{

 __shared__ float Mds [TILEWIDTH] [TILEWIDTH];

 __shared__ float Nds [TILEWIDTH] [TILEWIDTH];

 ...

}

__global__ void MM_SM (float* Md, float* Nd, float* Pd, int Width)

{

 extern __shared__ float mem_ds [];

 float *Mds = & (mem_ds [0]);

 float *Nds = & (mem_ds [size_of_Mds]);

 ...

}

int main ()

{

 ...

 MM_SM <<< dimGrid, dimBlock, sharedSize >>> (Md, Nd, Pd, matWidth);

 ...

Manual memory
management

Declare total shared
memory

WRAPPING UP

SUMMARY
Matrix multiply as a good example to leverage locality using the shared
memory

Mind the synchronization within the thread block

Dependencies = race conditions

Threads are scheduled in warps, threads per warp might not match the scratchpad use
model

Shared memory about 10x faster than global memory in terms of bandwidth

Leverage that for data reuse!

Collective memory access, so mind dependencies!

Usually one thread will fetch data for other threads to maximize coalescing

Further candidates for matrix multiply optimizations

ILP, vectorized memory accesses, fix bank conflicts, double buffering

34

