
GPU COMPUTING

LECTURE 04 - SHARED MEMORY 

OPTIMIZATIONS
Kazem Shekofteh


Kazem.shekofteh@ziti.uni-heidelberg.de

Institute of Computer Engineering


Ruprecht-Karls University of Heidelberg

Inspired from lectures by Holger Fröning



SEQUENTIAL NAIVE VERSION 
Why always Matrix Multiply?


Often used


Heavily optimized


Interesting access patterns


Good mixture of sufficient complexity but still simple 
enough for a comprehensive understanding


Finally, it’s an important operation!


Used in many applications as computational kernel

In particular for sparse matrix operations


Here: for dense matrices

Experiments and learning


High sustained/peak ratio


Test system/compiler/OS


Note on notation

M[row,column] = M[row][column]


Analogous to C
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ANALYSIS
Assumptions


Assume square matrices


Assume perfect write-through cache (no issues with 
conflict or capacity)


Number of flops: f = 2*N3

N² elements in C, each N steps, each step: multiply & 
add


Number of unique memory accesses: munique = 3*N2

Assuming perfect caching


Load from A,B,C, store to C


Counting all accesses (RW): mall = 4*N3


Computational intensity

r = f/m = f/munique = 2N3/3N2= O(N)


Computationally intensive (if perfect caching)


Peak performance expected for cache-based processor
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OPTIMIZING MATRIX MULTIPLY FOR A CPU 

Or: how to program a cache



MATRIX MULTIPLY – CPU NAIVE

CPU sequential version


No big surprises


Can be called directly
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void MatrixMulOnHost ( float* M, float* N, 

                       float* P, int Width )

{   

  for (int i = 0; i < Width; ++i) 

    {

    for (int j = 0; j < Width; ++j) 

      {

      float sum = 0;

      for (int k = 0; k < Width; ++k) 

        {

        float a = M[i * width + k];

        float b = N[k * width + j];

        sum += a * b;

      }

      P[i * Width + j] = sum;

    }

  }

}



MATRIX MULTIPLY – CPU NAIVE
Performance for single-threaded CPU run


Single precision (float, SP)


Xeon E5 Sandy Bridge


4 cores @ 2.4GHz (76.8 GFLOP/s peak)


High performance until 1500x1500 
elements?


Fits in cache (10MB) – capacity!


(1.5k elements)2 x 4B (float) = 9MB/matrix


(2k elements)2 x 4B (float) = 16MB/matrix


Reason for drops @ 512 and 1024 though?

Evictions due to conflicts
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MATRIX MULTIPLY – CPU TILED/BLOCKED 

Addition is associative 

a + (b + c) = (a + b) + c


So feel free to reorder multiply 
operations


Goal: increase cache hit rate


Block size is architecture-
dependent parameter


Cache size
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MATRIX MULTIPLY – CPU BLOCKED
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void MatrixMulOnHost ( float* M, float* N, float* P, long Width, long blockSize )

{   

  for ( long ii = 0; ii < matWidth; ii += blockSize ) {

    for ( long jj = 0; jj < matWidth; jj += blockSize ) {

      for ( long kk = 0; kk < matWidth; kk += blockSize ) {

        for (int i = ii; i < min(ii+blockSize, matWidth); ++i) {

          for (int j = jj; j < min(jj+blockSize, matWidth); ++j) {

            float sum = 0;

            for (int k = kk; k < Width; ++k) {

              float a = M[i * width + k];

              float b = N[k * width + j];

              sum += a * b;

            }

            P[i * Width + j] += sum;

          }

        }

      }

    }

  }

}

min only relevant if matWidth is 
not a full multiple of blockSize



MEMORY ACCESS PATTERN
Trace for naive implementation
 Trace for blocks of two-by-two
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..

<snip>

..

P[3][2] += M[3][0] * N[0][2]

P[3][2] += M[3][1] * N[1][2]

P[3][2] += M[3][2] * N[2][2]

P[3][2] += M[3][3] * N[3][2]

..

P[3][3] += M[3][0] * N[0][3]

P[3][3] += M[3][1] * N[1][3]

P[3][3] += M[3][2] * N[2][3]

P[3][3] += M[3][3] * N[3][3]

..

<snip>

..

..

<snip>

..

P[3][2] += M[3][0] * N[0][2]

P[3][2] += M[3][1] * N[1][2]

P[3][3] += M[3][0] * N[0][3]

P[3][3] += M[3][1] * N[1][3]

..

P[3][2] += M[3][2] * N[2][2]

P[3][2] += M[3][3] * N[3][2]

P[3][3] += M[3][2] * N[2][3]

P[3][3] += M[3][3] * N[3][3]

..

<snip>

..

No locality - RED Spatial locality - RED Temporal locality - RED



PERFORMANCE ANALYSIS
Performance for single-threaded CPU run


Xeon E5 Sandy Bridge


4 cores @ 2.4GHz


Single precision


Varying matrix sizes [elements per dimension]


Block size 0 = non-blocked (reference)


Huge drop for block size of 1?

Control flow overhead


Non-blocked better than blocked?

Cache size!


Factor of 5-10x for blocked vs. non-blocked 
typical
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MATRIX MULTIPLY FOR A GPU 



INITIAL GPU VERSION 

GPU version

Kernel only, data movement 
& control is missing


Notice the “d”-suffix!


Two outer loops are missing 

Handled instead by a 2D 
thread array


Per loop

2 FLOPS


4 memory accesses
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// Matrix multiplication kernel – thread code

__global__ void MatrixMulKernel ( float* Md,

                                  float* Nd,

                                  float* Pd, 

                                  int Width )

{

  float Pvalue = 0; // intermediate result

  float Melement, Nelement;


  for ( int k = 0; k < Width; ++k ) {

    Melement = Md[threadIdx.y * Width + k];

    Nelement = Nd[k * Width + threadIdx.x];

    Pvalue += Melement * Nelement;

  }

  Pd[threadIdx.y * Width + threadIdx.x] = Pvalue;

}



INITIAL GPU VERSION 
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void MatrixMulOnDevice ( float* M, float* N, float* P, int Width )

{

  int size = Width * Width * sizeof(float); 

  float* Md, Nd, Pd;

  ...

  // Allocate and Load M, N to device memory 

  cudaMalloc ( &Md, size );

  cudaMemcpy ( Md, M, size, cudaMemcpyHostToDevice );

  cudaMalloc ( &Nd, size );

  cudaMemcpy ( Nd, N, size, cudaMemcpyHostToDevice );

  // Allocate P on the device

  cudaMalloc ( &Pd, size );

  

  // Setup the execution configuration

  dim3 dimGrid ( 1, 1 );

  dim3 dimBlock ( Width, Width );

  MatrixMulKernel <<< dimGrid, dimBlock >>> ( Md, Nd, Pd, Width );


  // Read P from the device

  cudaMemcpy ( P, Pd, size, cudaMemcpyDeviceToHost );

  // Free device matrices

  cudaFree ( Md ); cudaFree ( Nd ); cudaFree ( Pd );

}



MATRIX MULTIPLY – QUICK ANALYSIS
A single thread block computes Pd


Each thread computes a  
single element of Pd


Load a row of Md


Load a column of Nd


Per element: one multiplication, one add


Write Pd


Issue 1: Matrix size limited by threads/block


Issue 2: Compute/Memory ratio

(= Computational intensity)


No cache => m = mall = 4N3


r = f/m = 2N3/4N3 = 1/2 (very low)


In FLOPS/Byte even worse: 2 FLOPS vs 16 Bytes = 
1/8 (horrible)
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MULTIPLE THREAD BLOCKS 

Multiple thread blocks, 
organized in a 2D array


Each block:

Consists of (TILE_WIDTH)2 threads


Computes (TILE_WIDTH)2 sub-matrix


Resulting grid

(WIDTH/TILE_WIDTH)2 blocks


Limited by max grid size
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MULTIPLE THREAD BLOCKS 
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// Matrix multiplication kernel – thread code

__global__ void MatrixMulKernel ( float* Md,

                                  float* Nd,

                                  float* Pd, 

                                  int Width )

{

  float Pvalue = 0; // intermediate result

  float Melement, Nelement;

  // Calculate the row index of the Pd element

  int row = blockIdx.y * blockDim.y + threadIdx.y;

  // Calculate the column index of the Pd element

  int col = blockIdx.x * blockDim.x + threadIdx.x;


  for ( int k = 0; k < Width; ++k ) {

    Melement = Md[row * Width + k];

    Nelement = Nd[k * Width + col];

    Pvalue += Melement * Nelement;

  }

  Pd[row * Width + col] = Pvalue;

}



ANALYSIS
RTX 2080 GPU, Turing-class


Scheduling: varying the number of 
threads per block


1k x 1k matrix size


Match block count


In general: “more threads are better”, 
but not always like this -> e.g. register 
pressure


Calculating FLOP/s

N2 elements, each 2N FLOPS, 2N3 FLOPs 
total 


Here: 2.14 GFLOPS total


Without data movement
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ANALYSIS - UPPER BOUND?
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Model
CC

Revi-
sion

Total 
global 

memory 
[bytes]

Multi-
proces

sors
Cores

Total 
constant 
memory 
[bytes]

Shared 
memory 

per 
block 

[bytes]

Regis-
ters
per 

block

Warp 
size

Threads
per 

block

Max 
dimen-
sion of 
a block

Max. 
dimen-
sion of 
a grid

Max. 
memory 

pitch 
[bytes]

Clock 
rate

[GHz]

Concurrent 
copy and 
execution

GeForce 
GTX 480 2,0 1.5G 15 480 64k 48k 32k 32 1k 1k x 1k 

x 64

65535 
x 

65535 
x 

65535

2G 1,4 Y

1

Tesla 
K20c 3,5 5G 13 2496 64k 48k 64k 32 1k 1k x 1k 

x 64

2G x 
65535 

x 
65535

2G 0,7 Y

2

RTX 
2080Ti 7,5 11G 68 4352 64k 48k 64k 32 1k 1k x 1k 

x 64

2G x 
65535 

x 
65535

2G 1,54 Y

3

For single precision: 4352 * 1.54 * 2 = 13,404.16 GFLOP/s (clock boost)



ANALYSIS - UPPER BOUND?

Each thread works on global memory

2 32bit accesses per SP Multiply-Add


4B per FLOP


=> 13 TFLOPs require 52 TB/s memory bandwidth

RTX 2080Ti: 352bit * 1750MHz (14 Gbps effective) (GDDR6) = 616 GB/s


Memory bandwidth limits performance to ~150 GFLOP/s

GPU caches?


-> Increase flop/memory ratio!


-> Similar to blocking, but this time we have to define reuse manually
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SHARED MEMORY OPTIMIZATIONS



SHARED MEMORY 
On-chip memory


Lifetime: thread lifetime


Access costs in the best case 
equal register access


Organized in n banks

Typ. 16-32 banks with 32bit 
width


Low-order interleaving


Parallel access if no conflict


Conflicts result in access 
serialization
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SHARED MEMORY BANK CONFLICTS
Shared memory bank 

access without blocking

Shared memory bank 
access with blocking


Multi- and broadcast 
meantime supported
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TILING/BLOCKING
Associativity of C = A * B


Resorting the summation of the pair-
wise products


Increase locality by reordering 
memory accesses


=> Tiling or blocking


Each TxT tile uses each element T times


Calculate only parts of the elements 
of C, so that access pattern has high 
locality


Beneficial for both sequential and 
parallel algorithms
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C0,0 C1,0 C0,1 C1,1

B0,0 * A0,0 B0,0 * A1,0 B0,1 * A0,0 B0,1 * A1,0
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B3,0 * A0,3 B3,0 * A1,3 B3,1 * A0,3 B3,1 * A1,3
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MATRIX MULTIPLY - SHARED MEMORY
Old: each input element is being 
read by TILE_WIDTH threads


New: is read by one thread, but 
used by multiple threads


Size of a sub-set should match a tile 
size


Separate kernel execution into 
phases


1. Fill shared memory


2. Execute


3. Repeat
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SHARED MEMORY - PHASES FOR 2X2 TILE
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T0,0 T1,0 T0,1 T1,1

Md0,0 —> Mds0,0 Md1,0 —> Mds1,0 Md0,1 —> Mds0,1 Md1,1 —> Mds1,1

Nd0,0 —> Nds0,0 Nd1,0 —> Nds1,0 Nd0,1 —> Nds0,1 Nd1,1 —> Nds1,1

PdValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

PdValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1

Md2,0 —> Mds0,0 Md3,0 —> Mds1,0 Md2,1 —> Mds0,1 Md3,1 —> Mds1,1

Nd0,2 —> Nds0,0 Nd1,2 —> Nds1,0 Nd0,3 —> Nds0,1 Nd1,3 —> Nds1,1

PdValue0,0 += 
Mds0,0*Nds0,0 + 
Mds1,0*Nds0,1

PdValue1,0 += 
Mds0,0*Nds1,0 + 
Mds1,0*Nds1,1

PdValue0,1 += 
Mds0,1*Nds0,0 + 
Mds1,1*Nds0,1

PdValue1,1 += 
Mds0,1*Nds1,0 + 
Mds1,1*Nds1,1

… … … …
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NEW FLOP/MEMORY RATIO
Assuming a TILE_WIDTH of 16 and 
a 1k x 1k matrix


256 threads per block


1k/16 => 64 x 64 blocks


Each block

2 loads per thread = 512 loads


16 MADDs per thread = 8k flops


New flop/memory ratio

8k:512 = 16:1


16 FLOPS : 4 Bytes = 4 (good!)


Plus improved coalescing
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SHARED MEMORY IMPLEMENTATION
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__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width )

{

  __shared__ float Mds [TILEWIDTH] [TILEWIDTH];

  __shared__ float Nds [TILEWIDTH] [TILEWIDTH];

  int bx = blockIdx.x;  int by = blockIdx.y;

  int tx = threadIdx.x; int ty = threadIdx.y;

  int row = by * TILEWIDTH + ty;

  int col = bx * TILEWIDTH + tx;

  float Pvalue = 0;


  if !(Row > Width || Col > Width) {

    for ( int m = 0; m < Width / TILEWIDTH; ++m ) { // loop over tiles

      // Collaborative loading of Md and Nd tiles into shared memory

      Mds [ty] [tx] = Md [ row * Width + ( m * TILEWIDTH + tx ) ];

      Nds [ty] [tx] = Nd [ col + ( m * TILEWIDTH + ty ) * Width ];

      __syncthreads();


      for ( int k = 0; k < TILEWIDTH; ++k )

        Pvalue += Mds[ty][k] * Nds[k][tx];

      __syncthreads ();

    }

    Pd[row * Width + col] = Pvalue;

  }

}

Something is 
missing here!



SHARED MEMORY IMPLEMENTATION
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__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width )

{

  __shared__ float Mds [TILEWIDTH] [TILEWIDTH];

  __shared__ float Nds [TILEWIDTH] [TILEWIDTH];

  int bx = blockIdx.x;  int by = blockIdx.y;

  int tx = threadIdx.x; int ty = threadIdx.y;

  int row = by * TILEWIDTH + ty;

  int col = bx * TILEWIDTH + tx;

  float Pvalue = 0;


  if !(Row > Width || Col > Width) {

    for ( int m = 0; m < Width / TILEWIDTH; ++m ) { // loop over tiles

      // Collaborative loading of Md and Nd tiles into shared memory

      Mds [ty] [tx] = Md [ row * Width + ( m * TILEWIDTH + tx ) ];

      Nds [ty] [tx] = Nd [ col + ( m * TILEWIDTH + ty ) * Width ];

      __syncthreads();


      for ( int k = 0; k < TILEWIDTH; ++k )

        Pvalue += Mds[ty][k] * Nds[k][tx];

      __syncthreads ();

    }

    Pd[row * Width + col] = Pvalue;

  }

}

Dependencies resolved 
using synchronization



SHARED MEMORY RESULTS
Performance comparison for RTX 
2080


Tiled only


Use of shared memory


Block size <= 1k


Both code optimizations and kernel 
launch configuration matters!


Still a gap of about 10x to peak 
performance


Note: GPU’s L1 cache was turned 
off
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POSSIBLE FURTHER OPTIMIZATIONS
Multiple output values per thread


Reduces the pressure on shared memory as tile data can be used in multiple calculations


ILP optimization


Bank conflicts in shared memory

Use nvprof to find out about such conflicts


Vectorize shared memory loads and stores by using compound data types 

float2/float4


Effective shared memory bandwidth should increase


Double buffering by overlapping shared memory load for first set while 
second set is computed


Effective latency hiding


Requirements on shared memory capacity double
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THREE TYPES OF DEPENDENCIES

RAW: true or data dependency

True dependency, so only solvable using synchronization, see (1)


WAR: anti dependency

Is a name dependency, solvable using synchronization or renaming, see (2)


WAW: output dependency

Is a name dependency, solvable using synchronization or renaming, n.a. here
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<snip>

    for ( int m = 0; m < Width / TILEWIDTH; ++m ) { // loop over tiles

      // Collaborative loading of Md and Nd tiles into shared memory

      Mds [ty] [tx] = Md [ row * Width + ( m * TILEWIDTH + tx ) ];

      Nds [ty] [tx] = Nd [ col + ( m * TILEWIDTH + ty ) * Width ];

      __syncthreads();


      for ( int k = 0; k < TILEWIDTH; ++k )

        Pvalue += Mds[ty][k] * Nds[k][tx];

      __syncthreads ();

    }

<snip>

1

2



SHARED MEMORY ALLOCATIONS
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__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width )

{

  __shared__ float Mds [TILEWIDTH] [TILEWIDTH];

  __shared__ float Nds [TILEWIDTH] [TILEWIDTH];

  ...

} 

__global__ void MM_SM ( float* Md, float* Nd, float* Pd, int Width )

{

  extern __shared__ float mem_ds [];

  float *Mds = & ( mem_ds [0] );

  float *Nds = & ( mem_ds [size_of_Mds] );

  ...

} 


int main () 

{

  ...

  MM_SM <<< dimGrid, dimBlock, sharedSize >>> ( Md, Nd, Pd, matWidth );

  ...

Manual memory 
management

Declare total shared 
memory



WRAPPING UP



SUMMARY
Matrix multiply as a good example to leverage locality using the shared 
memory


Mind the synchronization within the thread block

Dependencies = race conditions


Threads are scheduled in warps, threads per warp might not match the scratchpad use 
model


Shared memory about 10x faster than global memory in terms of bandwidth

Leverage that for data reuse!


Collective memory access, so mind dependencies!


Usually one thread will fetch data for other threads to maximize coalescing


Further candidates for matrix multiply optimizations

ILP, vectorized memory accesses, fix bank conflicts, double buffering
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