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UNDERSTANDING PERFORMANCE

“There is no lower bound how bad a baseline can be.”



UNDERSTANDING PERFORMANCE
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ROOFLINE MODEL

For a given processor !
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Arithmetic Intensity: FLOPs/Byte Ratio

Patterson, Hennessy: Computer Organization and Design RISC-V Edition: The Hardware Software Interface, MK, 2017



COMPARING SYSTEMS

Example: Opteron X2 vs. Opteron X4

2-core vs. 4-core, 2x FP performance/
core, 2.2GHz vs. 2.3GHz

Same memory system

To get higher performance on X4 than
X2

Need high arithmetic intensity

Or working set must fit in X4’s 2MB L-3
cache

Attainable GFLOP/s

128.0
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Patterson, Hennessy: Computer Organization and Design RISC-V Edition: The Hardware Software Interface, MK, 2017



OPTIMIZING PERFORMANCE

Optimize FP performance

64.0
Balance adds & multiplies
Improve superscalar ILP 32.0
Use of SIMD instructions 16.0 Q}@_peak floating-point performance

Optimize memory usage
Software prefetch
Avoid load stalls
Memory affinity

0
o

4.0

Attainable GFLOPs/second

: 2.0 :
Avoid non-local data accesses : ,
e | : Kernel 1 : Kernel 2
Optimization depends on r, but r can vary 1.0 : :
May scale with problem size 05 : : -
: 1 1 1
Caching reduces memory accesses => '8 fa 21 2 4 8 16
increases arithmetic intensity Arithmetic Intensity: FLOPs/Byte Ratio

Patterson, Hennessy: Computer Organization and Design RISC-V Edition: The Hardware Software Interface, MK, 2017 6



ALGORITHMS CAN BE DIVIDED INTO THREE
CLASSES

Memory-bound: limited in performance by access to memory

Algorithm includes plenty of memory accesses, but for each memory
access only few calculations are performed

Execution time dominated by memory accesses

Compute-bound: limited in performance by computations

Algorithm includes plenty of integer and floating point operations;
for each memory access many calculations are performed

Execution time dominated by computations

|0-bound: limited in performance by IO operations

Usually disk or network access

In the context of GPUs: PCle bottleneck affecting host-device data
movements



Profiling level

C/C++

IR (LLVM, etc.)

PROFILING AT SASS LEVEL

PTX




UNDERSTANDING GPU PERFORMANCE

Profiling: understanding application behavior in terms of static and
dynamic behavior

Static: instruction count, possibly separated for different classes

Dynamic: cache behavior, scheduling, occupancy, memory stalls

Hardware performance counters: expensive resource, limited in capacity,
costly in access => profiling will affect the performance of your code
Ensure:

Correctness before profiling, e.g., cuda-memcheck for segmentation faults and
memory leaks

Compiler optimizations (nvcc -02 ...)

Debug information (nvcc -lineinfo ...)



NSIGHT COMPUTE

Records and analyzes kernel performance metrics
Pretty detailed: ~1000 metrics

Two user interfaces
Command line interface (CLI): ncu
GUIl: nv-nsight-cu
Recording and analyzing can be separated

Record into file using ncu, download for local use with nv-nsight-cu

ncu results are printed to stdout by default, use —--export/-o to save results to
a report file (.ncu-rep)
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METRICS

List all metrics
ncu —query-metrics <—chip tul02> (wc -1 reports 1687 lines :/ )

Better use sets ...

ncu —list—-sets

... Or custom combinations of sets, sections, and metrics

ncu ——-set default —--section SourceCounters —-metrics
sm sass 1nst executed op shared <app>

S ncu —--list-sets

Identifier Sections Enabled Estimated Metrics
default LaunchStats, Occupancy, SpeedOflLight ves 36

detailled ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly no 172

sis, Occupancy, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOflLight
RooflineChart, WarpStateStats

full ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly no 177
sis, MemoryWorkloadAnalysis Chart, MemoryWorkloadAnalysis Tables, Nvlink Ta
bles, Nvlink Topology, Occupancy, SchedulerStats, SourceCounters, SpeedOflL1i
ght, SpeedOflLight RooflineChart, WarpStateStats

source SourceCounters no 58




NSIGHT SYSTEM

Records and analyzes system performance metrics

In particular, CPU-GPU
Host code annotations

finclude <nvTools

Two user interfaces

Command line interface (CLI): nsys

GUI: nsight-svys

Recording and analyzing can be separated

interactions

to mark code for later reference

-xt .h> and link with -1nvToolsExt

nvtxRangePush (Y“sleeping”) ;
sleep (100) ;
nvtxRangePop () ;

Record into file using nsys profile <app>, download for local use



EXAMPLE: PROFILING MATRIX MULTIPLY



NCU PROFILING

S module load nvhpc/21.9

S ./cuBLAS-test-sm75 1024 1024 1024
SGEMM ( 1024 x 1024 x 1024) : 0.0002 sec, 8363.55 GFLOP/s

S ncu -f --set default -o <file> ./cuBLAS-test-sm75 1024 1024 1024

<snip>

==PROF== Profiling "volta sgemm 128x64 nn" - 2: 0%....50%....100% - 8 passes
SGEMM ( 1024 x 1024 x 1024) : 0.5779 sec, 3.46 GFLOP/s

<snip>

S ncu -f --set full --section ComputeWorkloadAnalysis -o <file> ./cuBLAS-test-
sm75 1024 1024 1024

<snip>

==PROF== Profiling "volta sgemm 128x64 nn" - 2: 0%....50%....100% - 33 passes
SGEMM ( 1024 x 1024 x 1024) : 1.7117 sec, 1.17 GFLOP/s

<snip>

14



“SPEED OF LIGHT™ ANALYSIS

» GPU Speed Of Light Throughput All v O

High-level overview of the throughput for compute and memory resources of the GPU.For each unit,the throughput reports the achieved percentage of utilization
with respect to the theoretical maximum.Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest
contributor.High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart.

Compute (SM) Throughput [%] 84.93 Duration [usecond] 228 .10
Memory Throughput [%] 39.48 Elapsed Cycles [cycle] 292771
L1/ TEX Cache Throughput [%] 71.13 SM Active Cycles [cycle] 268708.31
L2 Cache Throughput [%] 29.00 SM Frequency [cycle/nsecond] 1.28
DRAM Throughput [%] 11.89 DRAM Frequency [cycle/nsecond] 6.39

The kernel is utilizing greater than 80.0% of the available compute or memory performance of the device.To further improve
G) High Throughput performance work will likely need to be shifted from the most utilized to another unit.Start by analyzing workloads in the
section.

The ratio of peak float (fp32) to double (fp64) performance on this device is 32:1.The kernel achieved 85% of this device's fp32
peak performance and 0% of its fp64 peak performance.

G) Roofline Analysis

GPU Throughput

Compute (SM) [%]

Memory [%]

0.0 : : : 40.0 50.0 60.0
Speed Of Light (SOL) [%]




ROOFLINE ANALYSIS

Floating Point Operations Roofline
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MEMORY ANALYSIS

Memory Chart Show As: Transfer Size ~

1.13 M Inst 820.71K Req
Global

65.79 K Req

0.00 Req

System Memory

0.00 Inst

L1/ TEX
0.00 Req Céche 99.43 MB

L2 Cache

v - Hit Rate: 8.01 MB . 11.60 MB
0.00 Inst 0.00 Req 0.60 % Hit Rate:

Texture 91.27 %
4.27 MB

Device Memory

0.00 Inst 0.00 Req

Surface
0.00 Req

2.98 M Inst | | 2.18 M Req Charer

Peer Memory

Memory
803.84 K Req




A A

Peak performance assumption
only holds true for square
matrices

Notation: m—n-k parameters of
cublasSgemm

Total work identical

Reality: substantial n
performance loss ..
C=A-B
m| A C |m
k N

GFLOP/s

10000

38000

6000

4000

2000

SKEWED MATRICES

1024-1024-1024

2048-512-1024

4096-256-1024

8192-128-1024

16384-64-1024

32768-32-1024

65536-16-1024

524288-2-1024 .

18
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USING NCU TO UNDERSTAND MORE

Profile your parametrized application and record to file

for ((i=1;i<=1024;1i*=2)); do ncu —-f —--set full -o cuBLAS-skewed-S5((1024*3S1i))-5
((1024/51))-S((1024)) ./cuBLAS-test-sm75 S ((1024*Si)) S((1024/351)) S((1024)) ;
done

Find metrics of interest

Postprocess record file

ncu —-—-1mport <file.ncu-rep> —details-all

L1 hit rate:
L2 hit rate:
Shared memory:
SM -> L1:

L1 -> L2:

L2 -> DRAM:

lltex t sector hit rate.pct

lts t sector hit rate.pct

sass 1nst executed shared loads

sass 1nst executed shared stores

lltex t output wavefronts pipe lsu mem global op 1ld.sum
lltex t output wavefronts pipe lsu mem global op sSt.sum
lltex t sectors pipe 1lsu mem global op 1ld.sum

lltex t sectors pipe 1lsu mem global op st.sum

dram sectors read.sum

dram sectors write.sum

19



3000 B L1->L2 LD [MB] DRAM RD [MB]
2250
Traffic from L1 to L2 vs. traffic from 1500
L2 to DRAM
Reminder for matrix size of N*N 250
Unique memory accesses: 2N2*4B
(Assuming perfect caching) 0 M e e B e I

Resulting read traffic

From 1.25x (2048-512-1024)
to 256.03x (524288-2-1024)

1024-1024-1024
2048-512-1024
4096-256-1024
8192-128-1024
16384-64-1024
32768-32-1024
65536-16-1024
262144-4-1024

524288-2-1024
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B STS([Ts] [ SM->L1 ST [Ts]
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SKEWED MATRICES - SHARED MEMORY VS. GLOBAL
MEMORY TRANSACTIONS

18.000.000
13.500.000
9.000.000
4.500.000



100 %

75 %

50 %

25 %

0 %

1024-1024-1024

CACHE HIT RATES AND INTERNALS

2048-512-1024

4096-256-1024

B L1 hit rate

8192-128-1024

16384-64-1024

" L2 hit rate

32768-32-1024

65536-16-1024

262144-4-1024

524288-2-1024

Operation
1024-1024-1024

2048-512-1024
4096-256-1024
8192-128-1024
16384-64-1024
32768-32-1024
65536-16-1024
131072-8-1024

262144-4-1024
524288-2-1024
1048576-1-1024

Kernel

volta sgemm 128x64 nn

volta sgemm 128x128 nn

volta sgemm 128x128 nn

volta sgemm 128x64 nn

volta sgemm 128x64 nn

volta sgemm 128x32 slicedlx4 nn

volta sgemm 128x32 slicedlx4 nn

scal ob4d4addr |
scal ob4d4addr |

scal 64addr kernel

kernel

kernel

sgemm largek ldso64

gemmSN NN .

splitKreduce

kernel
gemmSN NN kernel
kernel

kernel

kernel
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ROOFLINE ANALYSIS

Floating Point Operations Roofline
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Profiling level

C/C++

IR (LLVM, etc.)

PROFILING AT PTX LEVEL

SASS

Lorenz Braun, Holger Froning, CUDA Flux: A Lightweight Instruction Profiler for CUDA Applications, Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS19), held as part of ACM/IEEE Supercomputing 2019 (SC19), Denver, CO, USA.



CURRENTLY AVAILABLE TOOLS FOR PROFILING

Hardware performance-counter based: nvprof & NSight
CUDA API trace
Light to heavy performance impact

Slowdown due to kernel replays

GPU simulators: GPGPU-Sim, Multi2Sim, Barra
Very detailed analyses possible
Very slow (10> - 109)

Usually behind currently available hardware

Instrumentation based: GPU Ocelot/Lynx, SASSI, NVBit (Research Prototype)
Custom profiling
No hardware metrics such as cache hit-rate
Fast, low overhead

Lifetime often limited

25



THE LLVM COMPILER FRAMEWORK AND CUDA

Mixed mode input
file

Since integration of gpucc [1], CUDA code is % e ]_l
natively supported [ e |
Framework can be split up in front-end, — [mim =1
'middle-end’ (optimizer) and back-end i
Middle-end can be easily extended by NVPTi
registering custom transformation passes [ — ]( (x|
CUDA compilation is implemented using mixed | Open-source
mode compilation flow | ritconpir -

contribution
é Fat Binary

[1] Jingyue Wu, et al. 2016. Gpucc: an open-source GPGPU compiler. CGO. DOI:https://doi.org/ 10.1145/2854038.2854041 26



https://doi.org/10.1145/2854038.2854041

CUDA FLUX: LLVM-BASED CODE INSTRUMENTATION
FOR PROFILING

Device Source Host Source

Static runtimes manage instrumentation

counters front end front end
Device pass: link device code to runtime Device IR @ Host IR

Host pass: link host code to runtime -
: v
PTX processing @Pmm
lterates over all kernels ! ) y
CUDA Flux : a CUDA Flux
Produces a PTX block summary containing Qwoz Pas) nefrueton Summeary Qostfa;
instructions counts of all basic blocks odifiod Device IR Vodifiod Host IR

Flexible: instrumentation on either o—

warp-level, CTA-level or full thread-grid

Binary

27



COMPUTING INSTRUCTIONS ON PTX LEVEL

Each basic block (BB) is instrumented

Begin of BB = branch target, no branches/jumps inside a
BB except for end of BB

On entering a BB the corresponding counter for the
block is increased

After kernel execution: PTX instruction counters

are calculated using BB counter and the PTX
instruction summary

Advantages
Fine grained profiling
Time does not depend on number of metrics monitored

PTX is an accessible intermediate assembly for CUDA GPUs

p

for.body

J

for.cond23

[T

entry

l

for.cond

T

F

for.body25 for.end

\

\

for.inc

for.nc36

CFG for 'matrixMul' function

\

for.end39
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LIMITATIONS

Profiling on PTX level, not SASS

Closer to high-level code, farer away from hardware

Kernel definition and kernel launch need to be in the same
compilation module

Modification of build system needed (in majority of cases):

Change nvcc to clang++

Non compatible compiler flags
Easy on good/simple build systems, error-prone on complicated build systems

Instrumentation takes place at IR level
Texture memory is not supported (clang limitation)

29



PERFORMANCE EVALUATION

CUDA Flux vs. nvprof using the Polybench-GPU Benchmark
Measurements on NVIDIA Tesla K20 and Titan Xp

Only kernel time is measured using a median of five executions

Four different profiling configurations
flux_warp: all threads of one single warp
flux_cta: all threads of one single CTA (aka. thread block)
flux_full: all threads of the complete thread grid
nvprof: measurement with 8 different metrics instruction counter metrics

Baseline measurement without any instrumentation or profiling is used to
normalize the results

Open-Source: available on github: https://github.com/UniHD-CEG/cuda-flux

and available in the lab (module load cuda flux)

30


https://github.com/UniHD-CEG/cuda-flux

Normalized Execution Time Comparison - K20
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Normalized Execution Time Comparison - TitanXp
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WRAPPING UP




SUMMARY

Models help us to understand performance based on application behavior

Roofline model
3C model

Profiling helps us to understand code behavior in detail
Usually based on hardware performance counters, but that’s expensive

Tools: Nsight, nvprof, CUDA Flux, etc.
Methodology: Model/Intuition/Hypothesis -> Experiment design -> Profiling -> Analysis

Excursion: Predictive performance modeling

Reasoning about performance of application and/or processor without executing it
(at least not on every combination of the tuple)

Execution statistics & HW characterization = performance (time, power, energy)
prediction

34



EXCURSION:
(PREDICTIVE) PERFORMANCE MODELING



PERFORMANCE MODELING

Speed Ease Flexibility Accurracy Scalability

Ad-hoc Analytical Models
Structured Analytical Models

Functional Simulation
Cycle accurate Simulation
HW Emulation (FPGA)
Similar hardware measurement

Node Prototype

Prototype at Scale

Final System

Learning-based Models 1 2

Adapted from: Kyle L. Spafford and Jeffrey S. Vetter. 2012. Aspen: a domain specific language for performance modeling. SC '12 36



HETEROGENEITY AND PORTABILITY

CUDA Flux
Predictions about execution time and power Colledton’ B
consumption
Collect Measure
Runtime/scheduling decisions @ime@
Provisioning decisions _ Y
" . Kernel Metrics Tllrr;e/ P?wer
Performance portability explorations niormation

State-of-the-art: 25 publications investigated

Methods: analytical (9) vs. learning (10) vs. others

CUDA Application

Online Metric
Collection

Kernel Metrics

Model Training

Representativeness (1-169 kernels/apps) Time / Power
Portability (1-9 GPUs)
Availability (only 2 models published)
DVFS support (6)

Time / Power

Time (21); power consumption (10) Estimate

Lorenz Braun, Holger Froning, CUDA Flux: A Lightweight Instruction Profiler for CUDA Applications, PMBS Workshop@S5C2019
https://github.com/UniHD-CEG/cuda-flux
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GPU MANGROVE: PORTABLE, FAST, SIMPLE

Instructions/time relationship for different workloads
10° - - -

Which metrics make good features? |
Instructions executed 10
FLOPs |
Memory footprint

Kernel launch configuration 10

Computational intensity

101 3

Synchronizations 0.0 0.2 0.4 0.6 0.8 1.0

total instructions 1el0

Portable code features only depend on the kernel and the data handed to it

Hardware metrics like cache-hit rates not allowed
Creation of models for new GPUs requires only time and power measurements

Instruction statistics are essential; represent actual work of the processing units
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GPU MANGROVE: GPU MANGROVE: PORTABLE,
FAST, SIMPLE PERFORMANCE PREDICTION

RandomForests
Light computational workload

Likely to over-fit (but can be improved by
training method)

Works well with even few samples

Interpolation outside range of training data is
difficult

Methodology

189 unique kernels from Parboil, Rodinia,
Polybench-GPU and SHOC

Prediction accuracy: 8.86-52.0% for time, 1.84-
2.94% for power, across five different GPU

Prediction latency: 15-108ms (not optimized)

TACO 2021 article: https://doi.org/10.1145/3431731, https://github.com/UniHD-CEG/gpu-mangrove
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Tutorial @ HIPEAC2021: https://www.hipeac.net/2021/budapest/#/program/sessions//856/
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https://github.com/UniHD-CEG/gpu-mangrove
https://www.hipeac.net/2021/budapest/#/program/sessions/7856/

BACKUP / VOLTA



Private to every processing block

] i

64 KiB shared memory

2 KiB L1 constant cache

8 KiB L1 instruction cache

[ 24 KiB L1 data/read-only cache ]

== ——— - ———— -

ﬁ
[>64 KiB L1.5 constant cache/128 KiB L1.5 instruction cache]
, T ]
[ 4096 KiB L2 data cache/L2 constant cache/L2 instruction cache J
4 I ' N
~16 GiIB HBM2
\_ _J

Figure 3.3: Memory hierarchy of the Pascal P100 GPU (GP104).
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Figure 3.1: Memory hierarchy of the Turing T4 GPU (TU104).
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