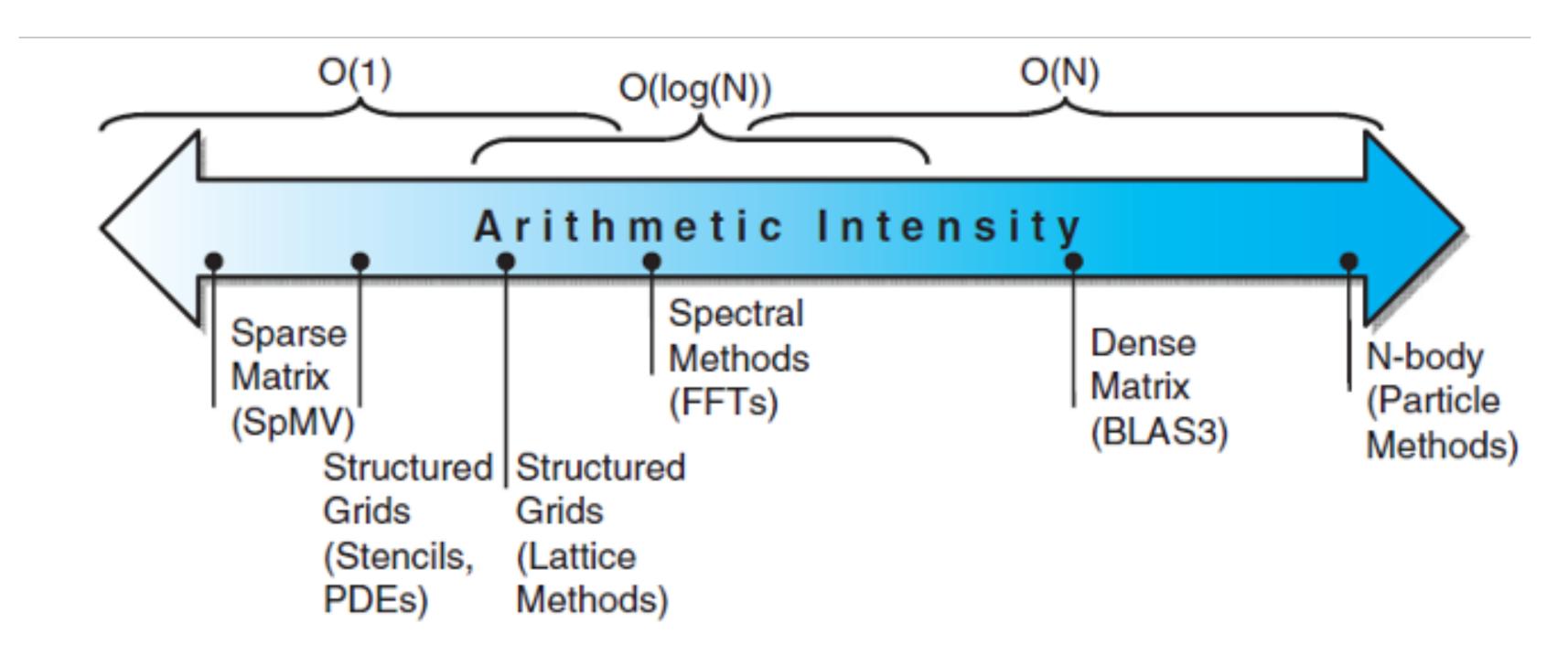
GPU COMPUTING LECTURE 06 - PROFILING

Kazem Shekofteh Kazem.shekofteh@ziti.uni-heidelberg.de Institute of Computer Engineering Ruprecht-Karls University of Heidelberg Inspired from lectures by Holger Fröning

UNDERSTANDING PERFORMANCE

"There is no lower bound how bad a baseline can be."

UNDERSTANDING PERFORMANCE



Arithmetic intensity ${\tt r}$ of an application: FLOPs (or OPs) per byte of memory accessed $${\rm FLOPs}$$

 $= \frac{1}{\text{Byte}}$

ROOFLINE MODEL

For a given processor

Determine peak compute performance (GFLOP/s) (= f)

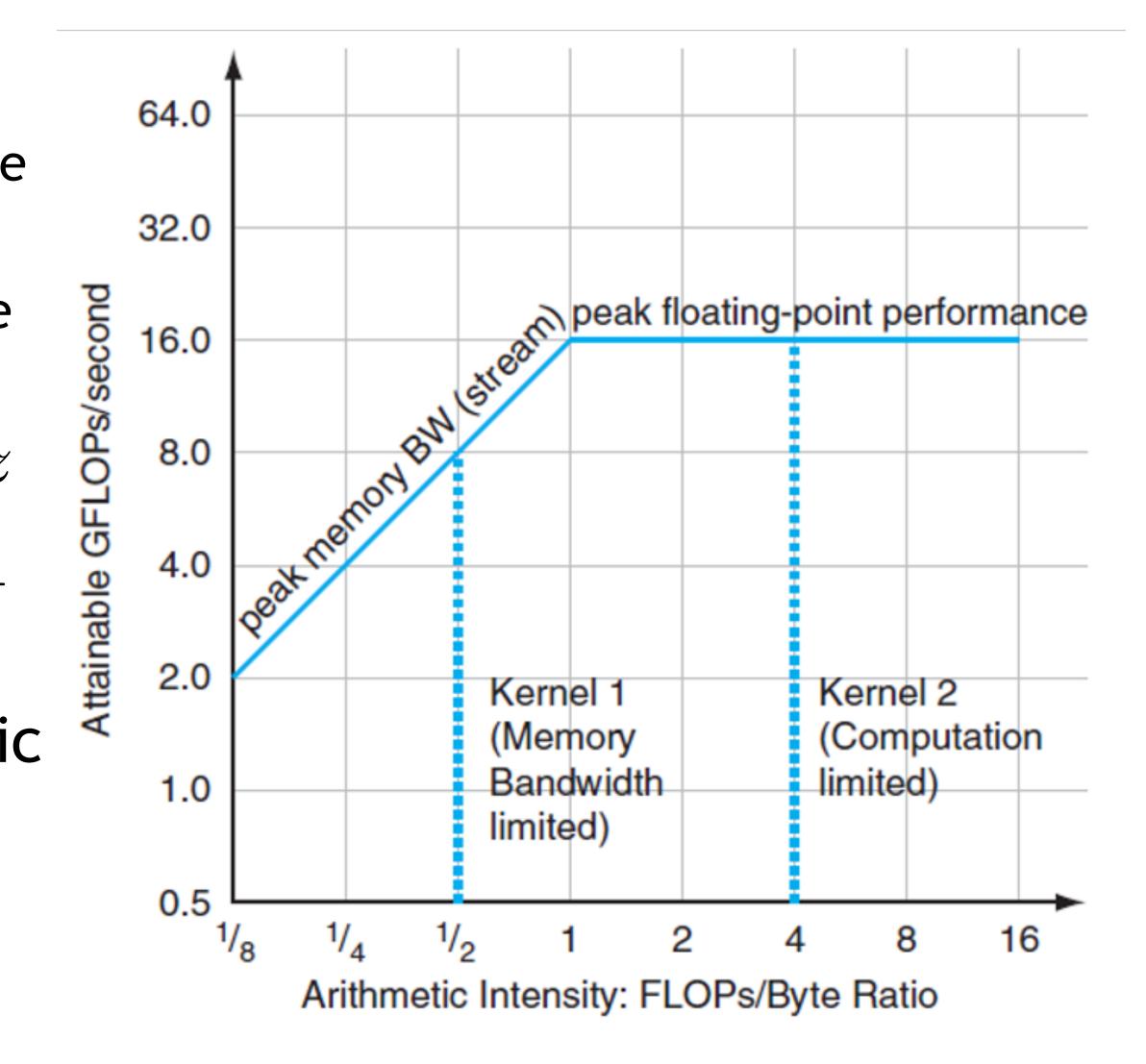
Determine peak memory performance (GB/s) (= m)

Slope-intercept form $y = w \cdot x + z$

Attainable GFLOP/s performance a is then $a = min(m \cdot r, f)$

Boundness determines target metric

Boundness determines choice of optimizations



COMPARING SYSTEMS

Example: Opteron X2 vs. Opteron X4

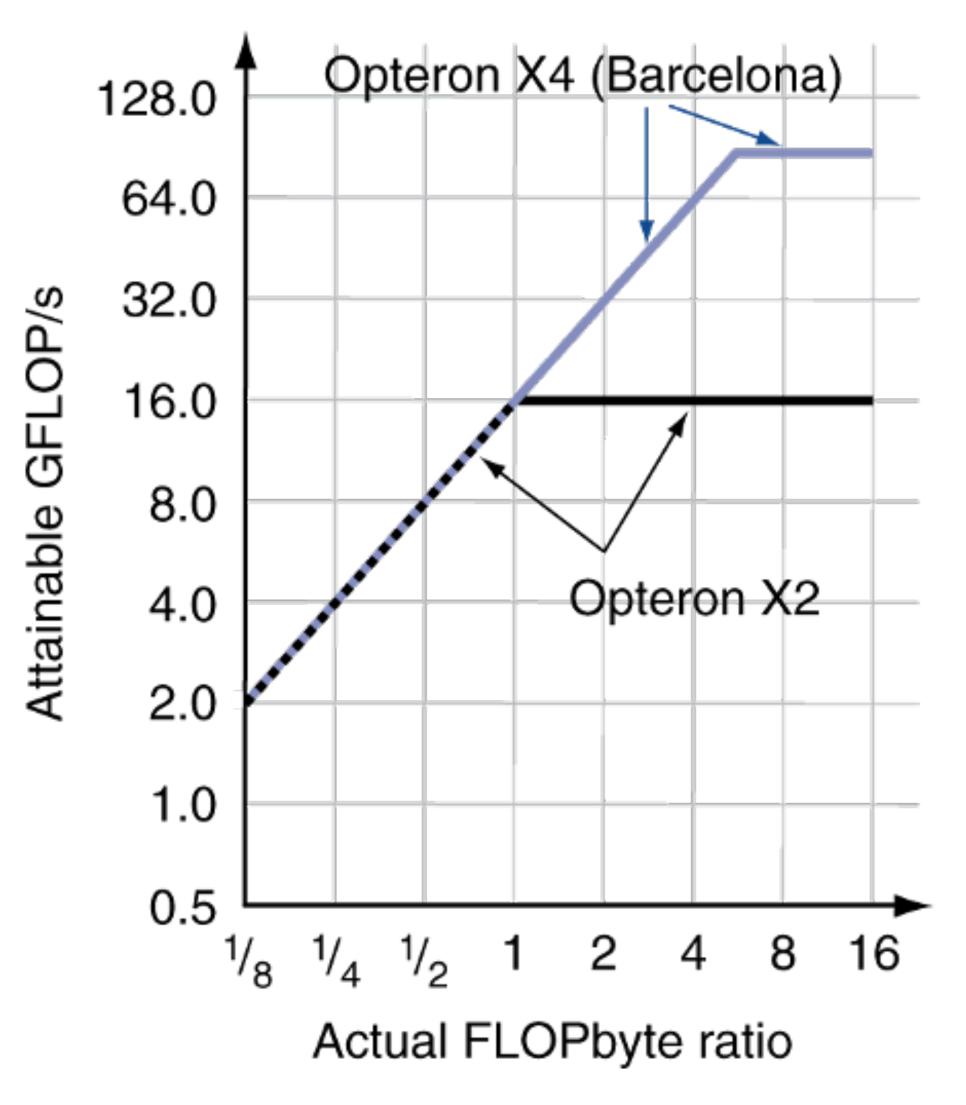
2-core vs. 4-core, 2× FP performance/core, 2.2GHz vs. 2.3GHz

Same memory system

To get higher performance on X4 than X2

Need high arithmetic intensity

Or working set must fit in X4's 2MB L-3 cache



OPTIMIZING PERFORMANCE

Optimize FP performance

Balance adds & multiplies

Improve superscalar ILP

Use of SIMD instructions

Optimize memory usage

Software prefetch

Avoid load stalls

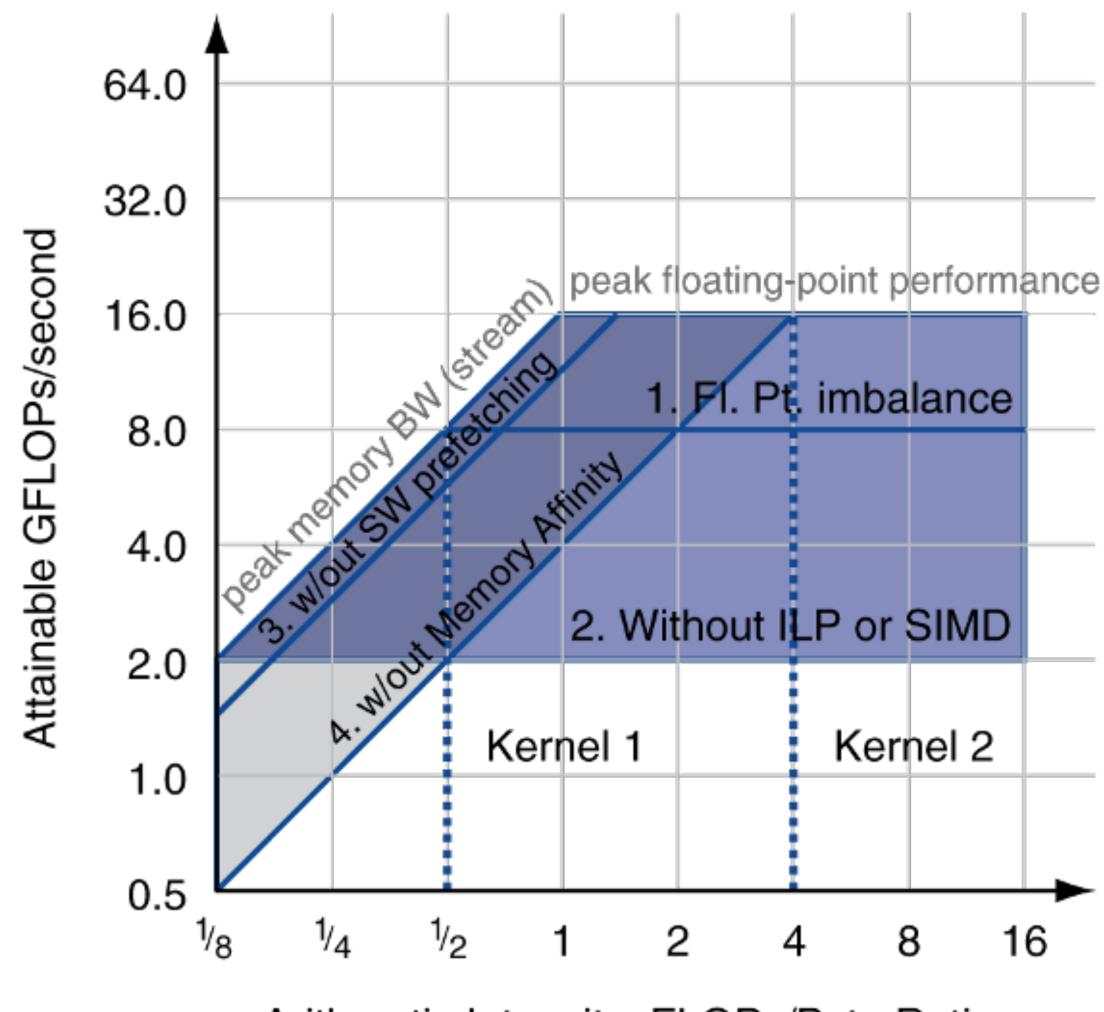
Memory affinity

Avoid non-local data accesses

Optimization depends on r, but r can vary

May scale with problem size

Caching reduces memory accesses => increases arithmetic intensity



Arithmetic Intensity: FLOPs/Byte Ratio

ALGORITHMS CAN BE DIVIDED INTO THREE CLASSES

Memory-bound: limited in performance by access to memory

Algorithm includes plenty of memory accesses, but for each memory access only few calculations are performed

Execution time dominated by memory accesses

Compute-bound: limited in performance by computations

Algorithm includes plenty of integer and floating point operations; for each memory access many calculations are performed

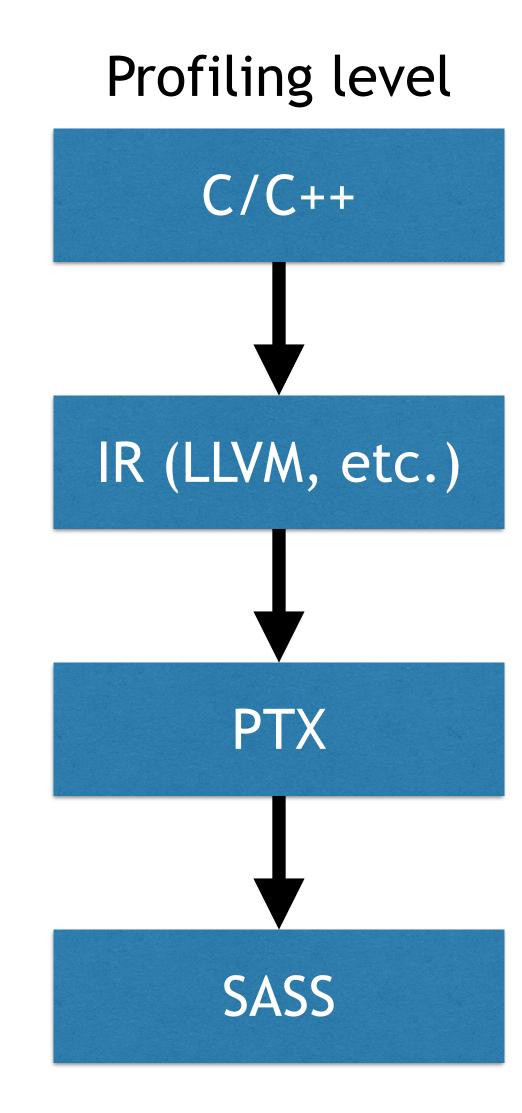
Execution time dominated by computations

10-bound: limited in performance by 10 operations

Usually disk or network access

In the context of GPUs: PCIe bottleneck affecting host-device data movements

PROFILING AT SASS LEVEL



UNDERSTANDING GPU PERFORMANCE

Profiling: understanding application behavior in terms of static and dynamic behavior

Static: instruction count, possibly separated for different classes

Dynamic: cache behavior, scheduling, occupancy, memory stalls

Hardware performance counters: expensive resource, limited in capacity, costly in access => profiling will affect the performance of your code

Ensure:

```
Correctness before profiling, e.g., cuda-memcheck for segmentation faults and memory leaks
```

```
Compiler optimizations (nvcc -02 ...)
```

Debug information (nvcc -lineinfo ...)

NSIGHT COMPUTE

Records and analyzes kernel performance metrics

Pretty detailed: ~1000 metrics

Two user interfaces

Command line interface (CLI): ncu

GUI: nv-nsight-cu

Recording and analyzing can be separated

Record into file using neu, download for local use with nv-nsight-eu

ncu results are printed to stdout by default, use --export/-o to save results to a report file (.ncu-rep)

METRICS

List all metrics

```
ncu -query-metrics <-chip tu102> (wc -1 reports 1687 lines:/)
```

Better use sets ...

ncu -list-sets

... or custom combinations of sets, sections, and metrics

ncu --set default --section SourceCounters --metrics
sm_sass_inst_executed_op_shared <app>

\$ nculist-sets							
Identifier	Sections	Enabled	Estimated Metrics				
default detailed	LaunchStats, Occupancy, SpeedOfLight ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnaly sis, Occupancy, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight_ RooflineChart, WarpStateStats	yes no	36 172				
full	ComputeWorkloadAnalysis, InstructionStats, LaunchStats, MemoryWorkloadAnalysis, MemoryWorkloadAnalysis_Chart, MemoryWorkloadAnalysis_Tables, Nvlink_Tables, Nvlink_Topology, Occupancy, SchedulerStats, SourceCounters, SpeedOfLight, SpeedOfLight_RooflineChart, WarpStateStats	no	177				
source	SourceCounters	no	58				

NSIGHT SYSTEM

Records and analyzes system performance metrics In particular, CPU-GPU interactions

Host code annotations to mark code for later reference

```
#include <nvToolsExt.h> and link with -lnvToolsExt
```

Two user interfaces

Command line interface (CLI): nsys

GUI: nsight-sys

Recording and analyzing can be separated

Record into file using nsys profile <app>, download for local use

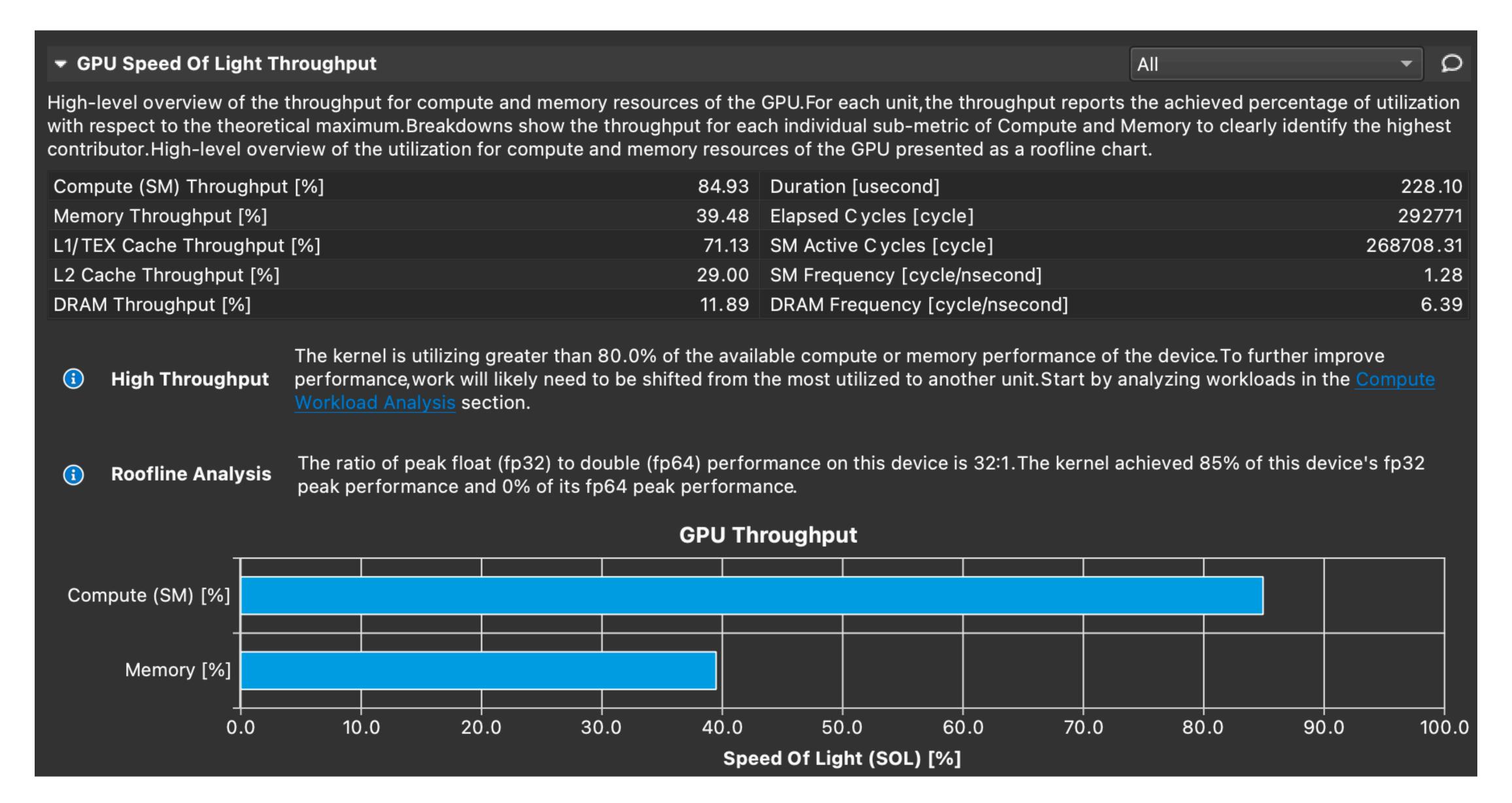
```
nvtxRangePush("sleeping");
sleep(100);
nvtxRangePop();
...
```

EXAMPLE: PROFILING MATRIX MULTIPLY

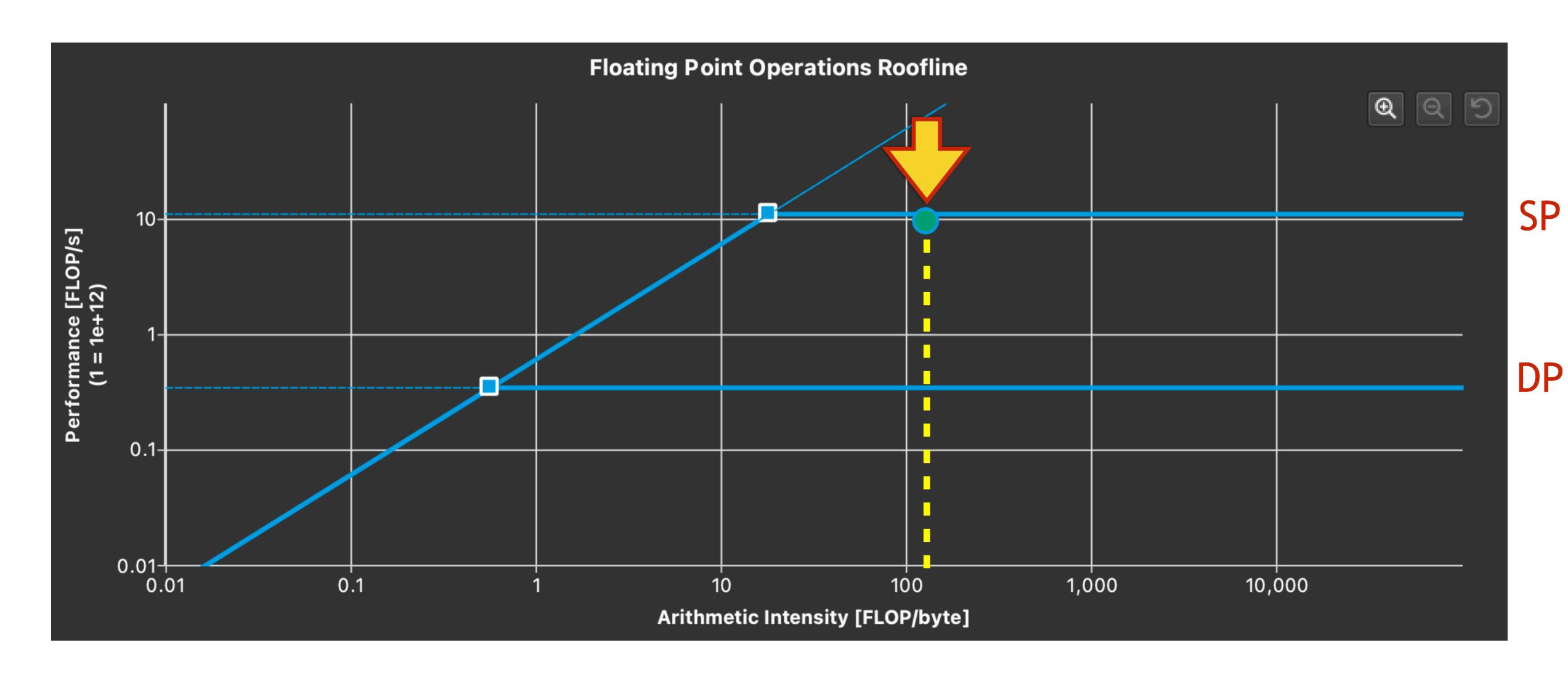
NCU PROFILING

```
$ module load nvhpc/21.9
$ ./cuBLAS-test-sm75 1024 1024 1024
SGEMM ( 1024 \times 1024 \times 1024): 0.0002 sec, 8363.55 GFLOP/s
$ ncu -f --set default -o <file> ./cuBLAS-test-sm75 1024 1024 1024
<snip>
==PROF== Profiling "volta sgemm 128x64 nn" - 2: 0%....50%....100% - 8 passes
SGEMM ( 1024 \times 1024 \times 1024): 0.5779 sec, 3.46 GFLOP/s
<snip>
$ ncu -f --set full --section ComputeWorkloadAnalysis -o <file> ./cuBLAS-test-
sm75 1024 1024 1024
<snip>
==PROF== Profiling "volta sgemm 128x64 nn" - 2: 0%....50%....100% - 33 passes
SGEMM ( 1024 \times 1024 \times 1024): 1.7117 sec, 1.17 GFLOP/s
<snip>
```

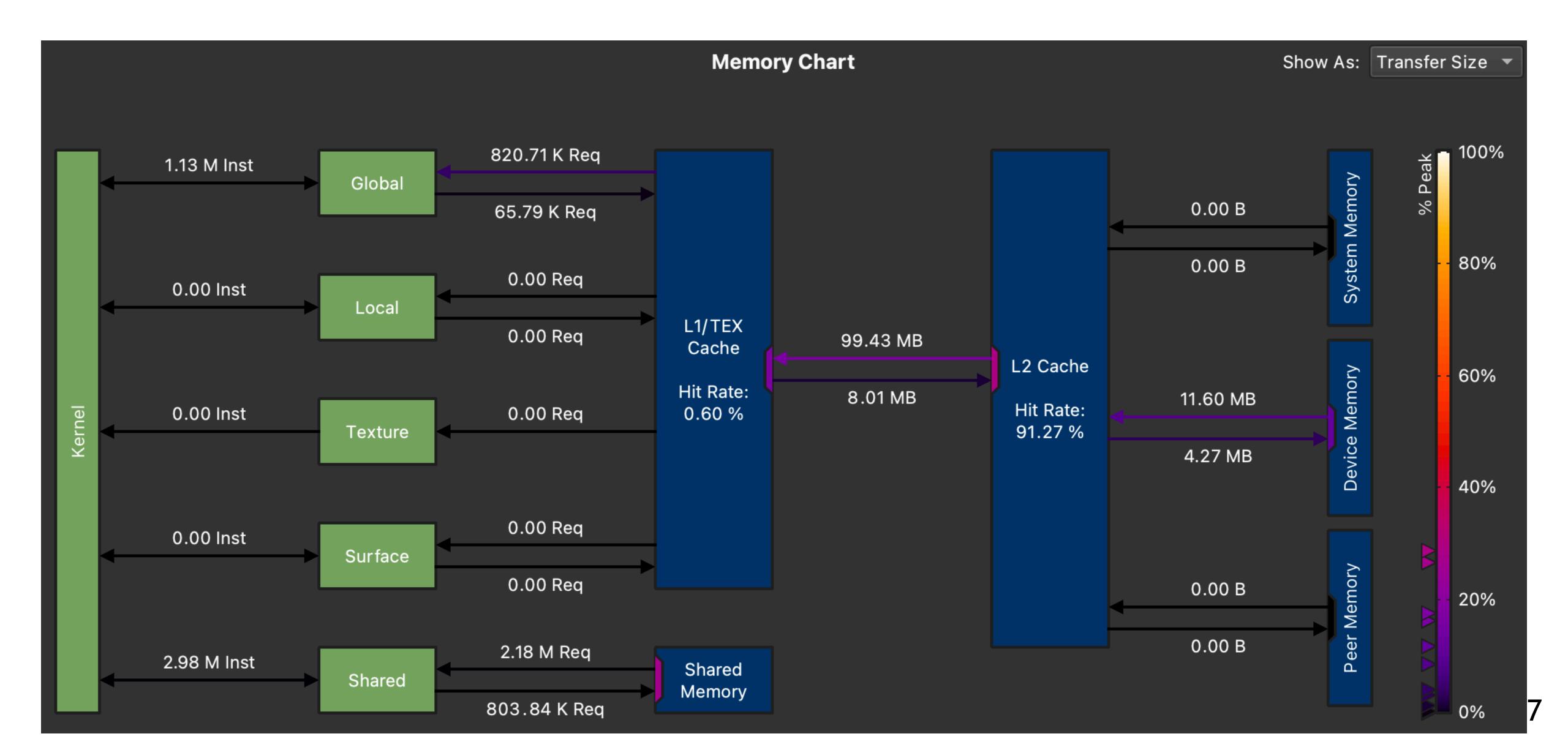
"SPEED OF LIGHT" ANALYSIS



ROOFLINE ANALYSIS



MEMORY ANALYSIS



SKEWED MATRICES

A A A

Peak performance assumption only holds true for square matrices

Notation: m-n-k parameters of cublasSgemm

Total work identical

Reality: substantial performance loss

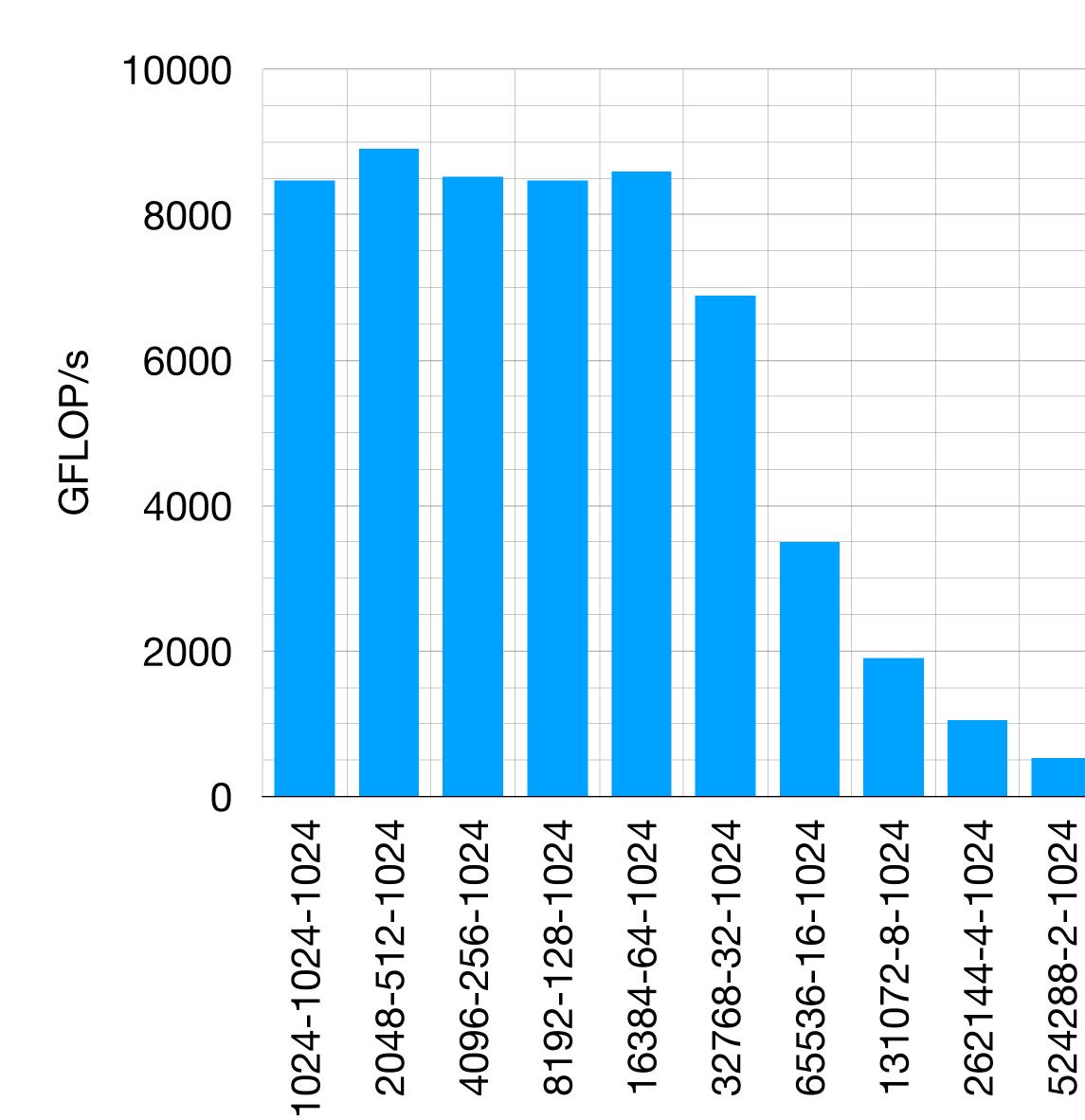
$$C = A \cdot E$$

m A C m

n

B

k



1048576-1-

USING NCU TO UNDERSTAND MORE

Profile your parametrized application and record to file

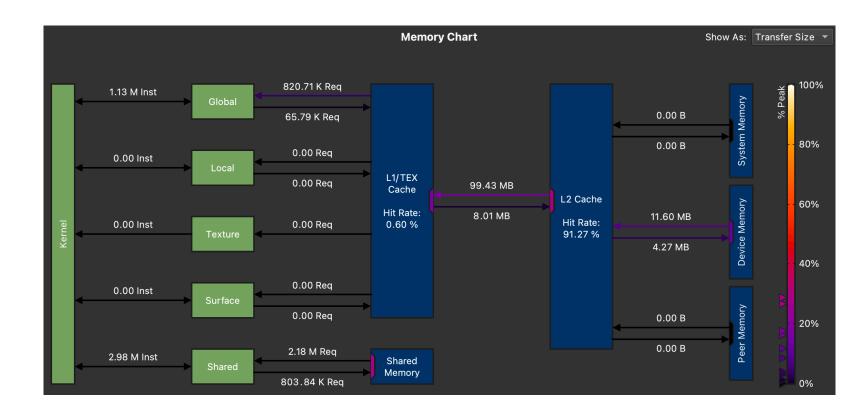
```
for ((i=1;i<=1024;i*=2)); do ncu -f --set full -o cuBLAS-skewed-\$((1024*\$i))-\$((1024/\$i))-\$((1024)) ./cuBLAS-test-sm75 \$((1024*\$i)) \$((1024/\$i)) \$((1024/\$i)); done
```

Find metrics of interest

Postprocess record file

```
ncu --import <file.ncu-rep> -details-all
```

SKEWED MATRICES - GLOBAL READ TRAFFIC



Traffic from L1 to L2 vs. traffic from L2 to DRAM

Reminder for matrix size of N*N

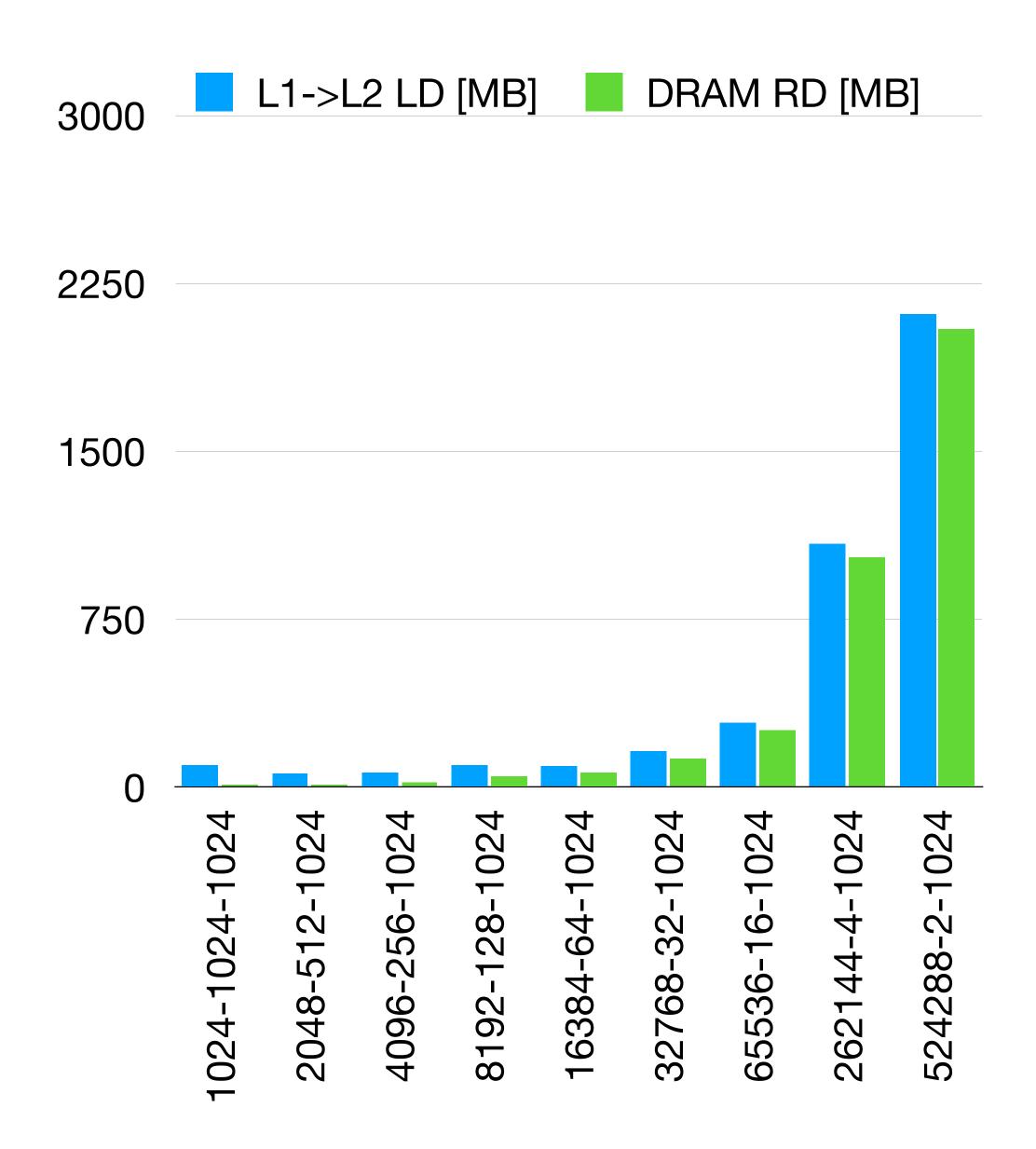
Unique memory accesses: 2N²*4B

(Assuming perfect caching)

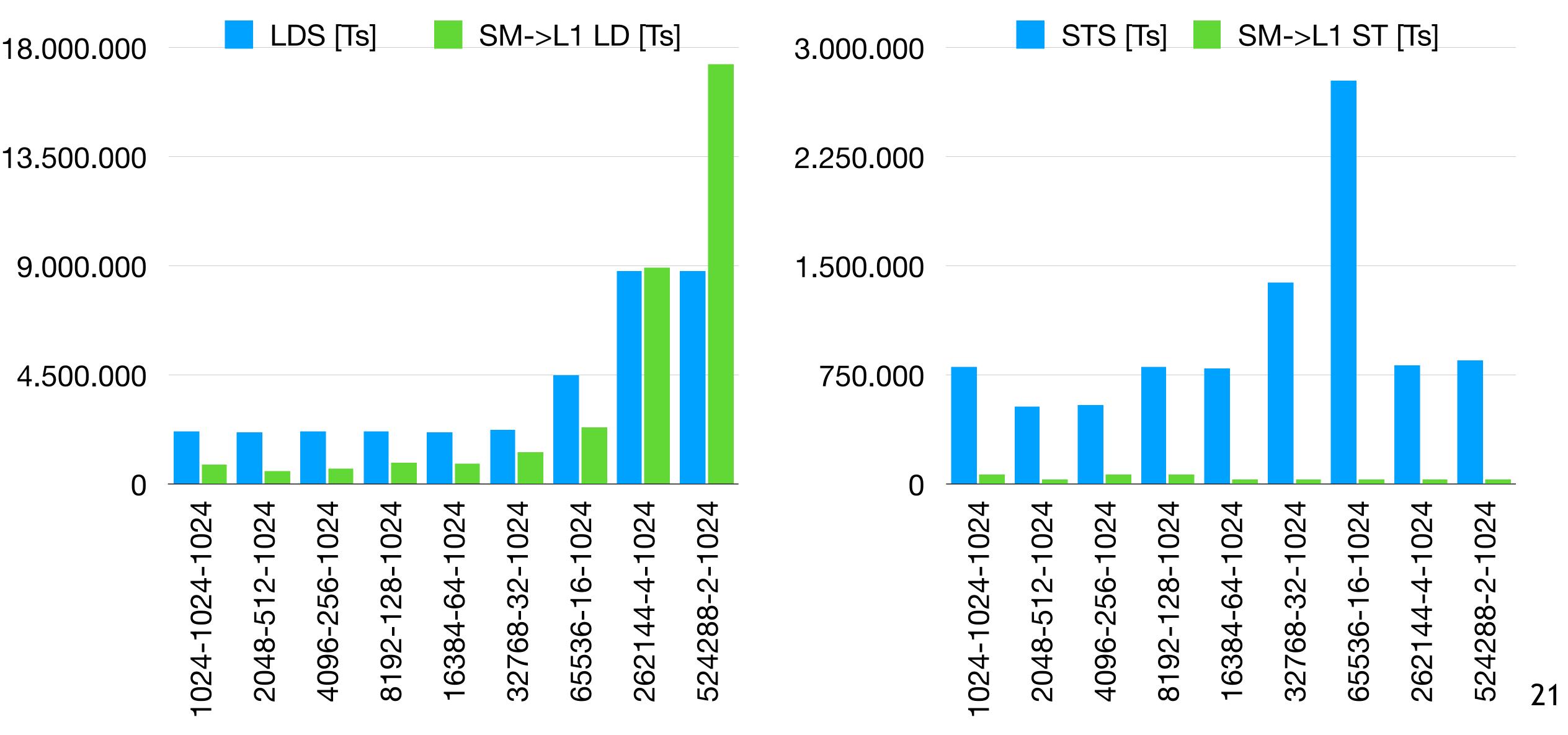
Resulting read traffic

From 1.25x (2048-512-1024)

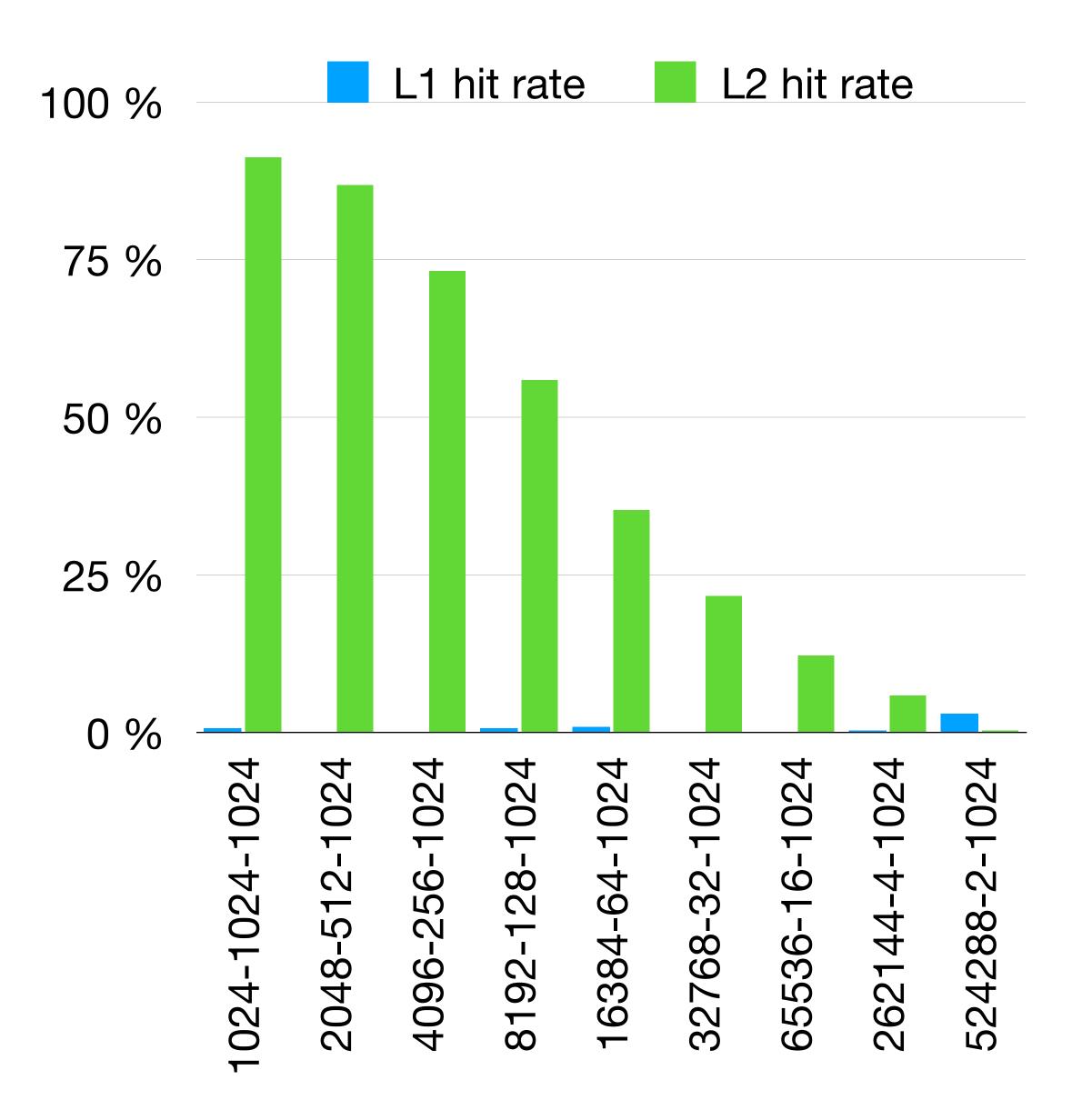
to 256.03x (524288-2-1024)



SKEWED MATRICES - SHARED MEMORY VS. GLOBAL MEMORY TRANSACTIONS

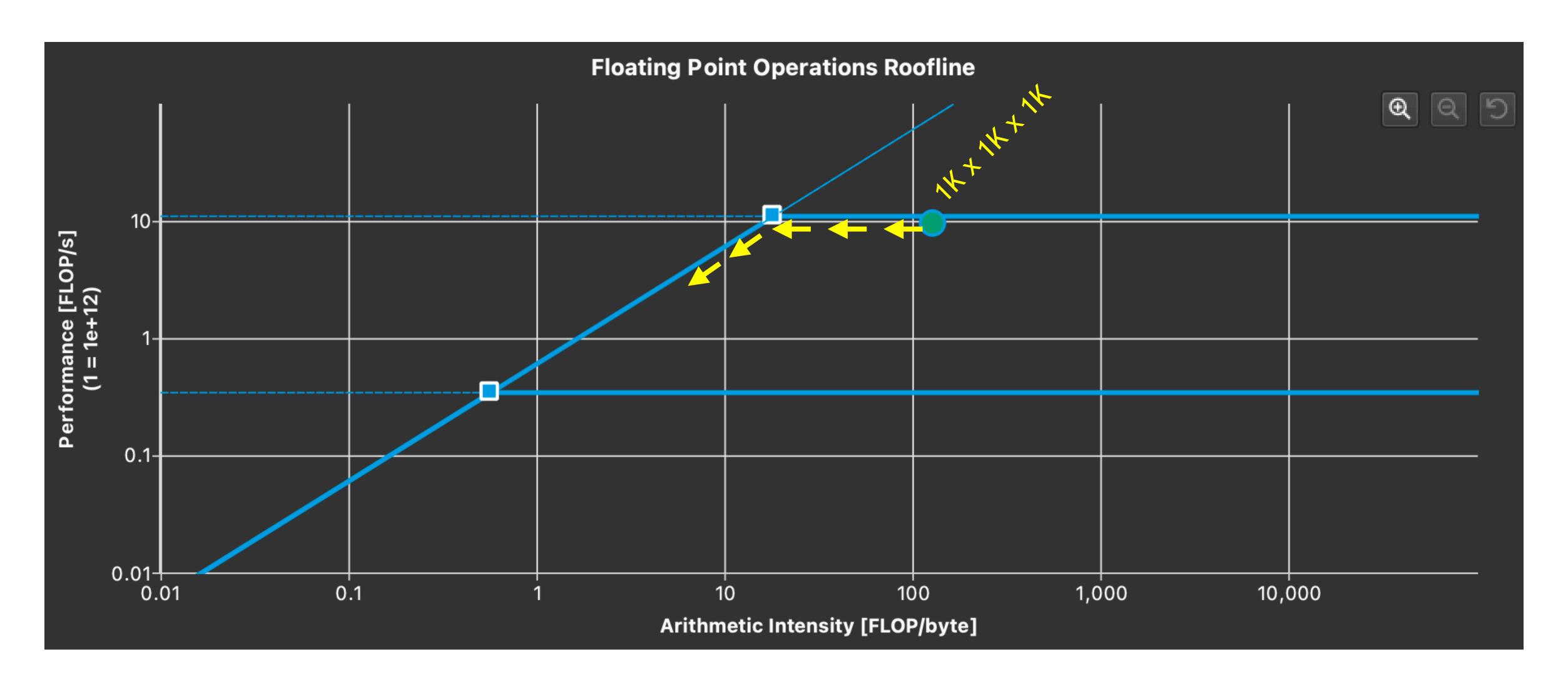


CACHE HIT RATES AND INTERNALS

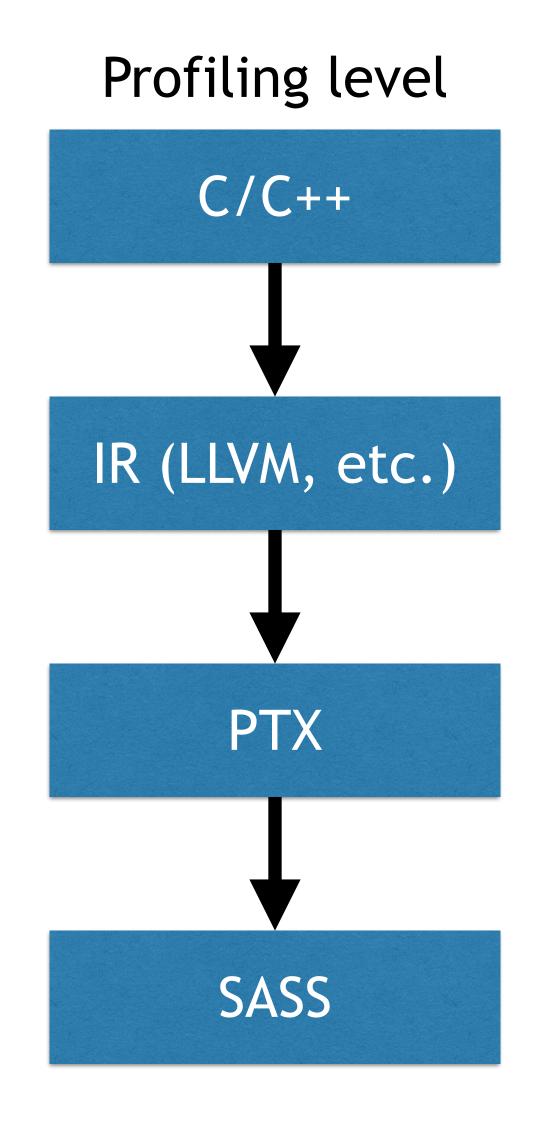


Operation	Kernel			
1024-1024-1024	volta_sgemm_128x64_nn			
2048-512-1024	volta_sgemm_128x128_nn			
4096-256-1024	volta_sgemm_128x128_nn			
8192-128-1024	volta_sgemm_128x64_nn			
16384-64-1024	volta_sgemm_128x64_nn			
32768-32-1024	volta_sgemm_128x32_sliced1x4_nn			
65536-16-1024	volta_sgemm_128x32_sliced1x4_nn			
131072-8-1024	scal_64addr_kernel			
	scal_64addr_kernel			
	scal_64addr_kernel			
	sgemm_largek_lds64			
262144-4-1024	gemmSN_NN_kernel			
524288-2-1024	gemmSN_NN_kernel			
1048576-1-1024	kernel			
	kernel			
	splitKreduce_kernel			

ROOFLINE ANALYSIS



PROFILING AT PTX LEVEL



Lorenz Braun, Holger Fröning, CUDA Flux: A Lightweight Instruction Profiler for CUDA Applications, Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS19), held as part of ACM/IEEE Supercomputing 2019 (SC19), Denver, CO, USA.

CURRENTLY AVAILABLE TOOLS FOR PROFILING

Hardware performance-counter based: nvprof & NSight

CUDA API trace

Light to heavy performance impact

Slowdown due to kernel replays

GPU simulators: GPGPU-Sim, Multi2Sim, Barra

Very detailed analyses possible

Very slow (10⁵ - 10⁶)

Usually behind currently available hardware

Instrumentation based: GPU Ocelot/Lynx, SASSI, NVBit (Research Prototype)

Custom profiling

No hardware metrics such as cache hit-rate

Fast, low overhead

Lifetime often limited

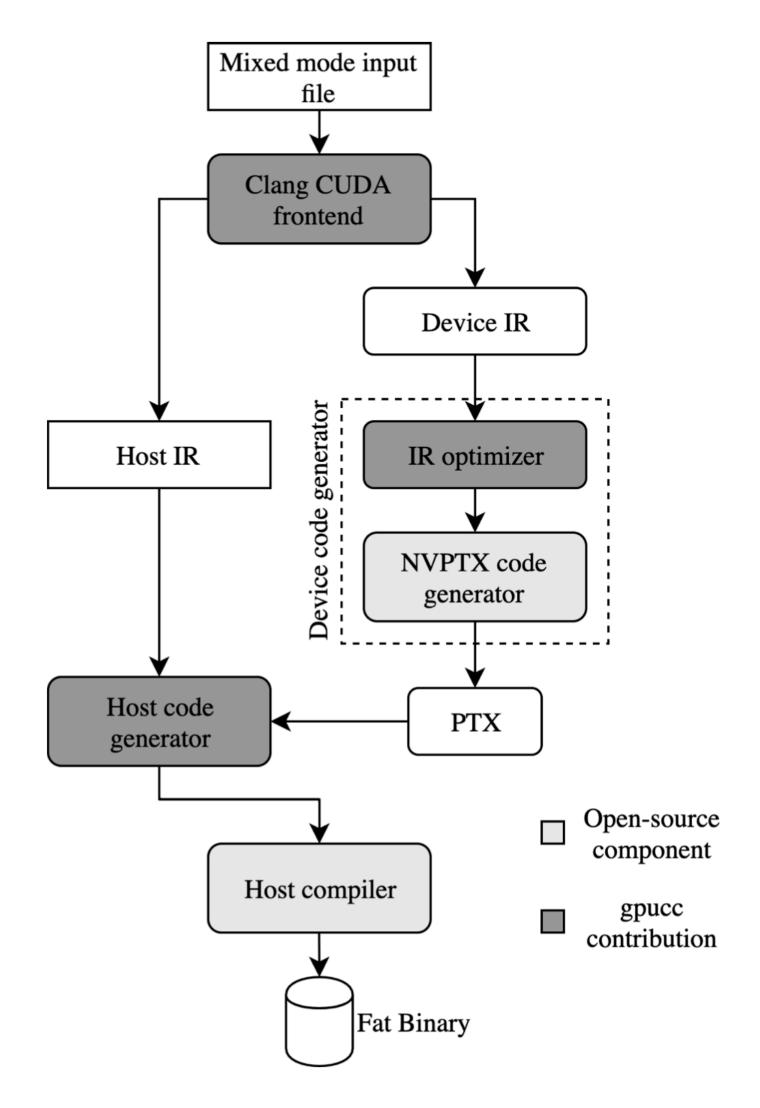
THE LLVM COMPILER FRAMEWORK AND CUDA

Since integration of gpucc [1], CUDA code is natively supported

Framework can be split up in front-end, 'middle-end' (optimizer) and back-end

Middle-end can be easily extended by registering custom transformation passes

CUDA compilation is implemented using mixed mode compilation flow



CUDA FLUX: LLVM-BASED CODE INSTRUMENTATION FOR PROFILING

Static runtimes manage instrumentation counters

Device pass: link device code to runtime

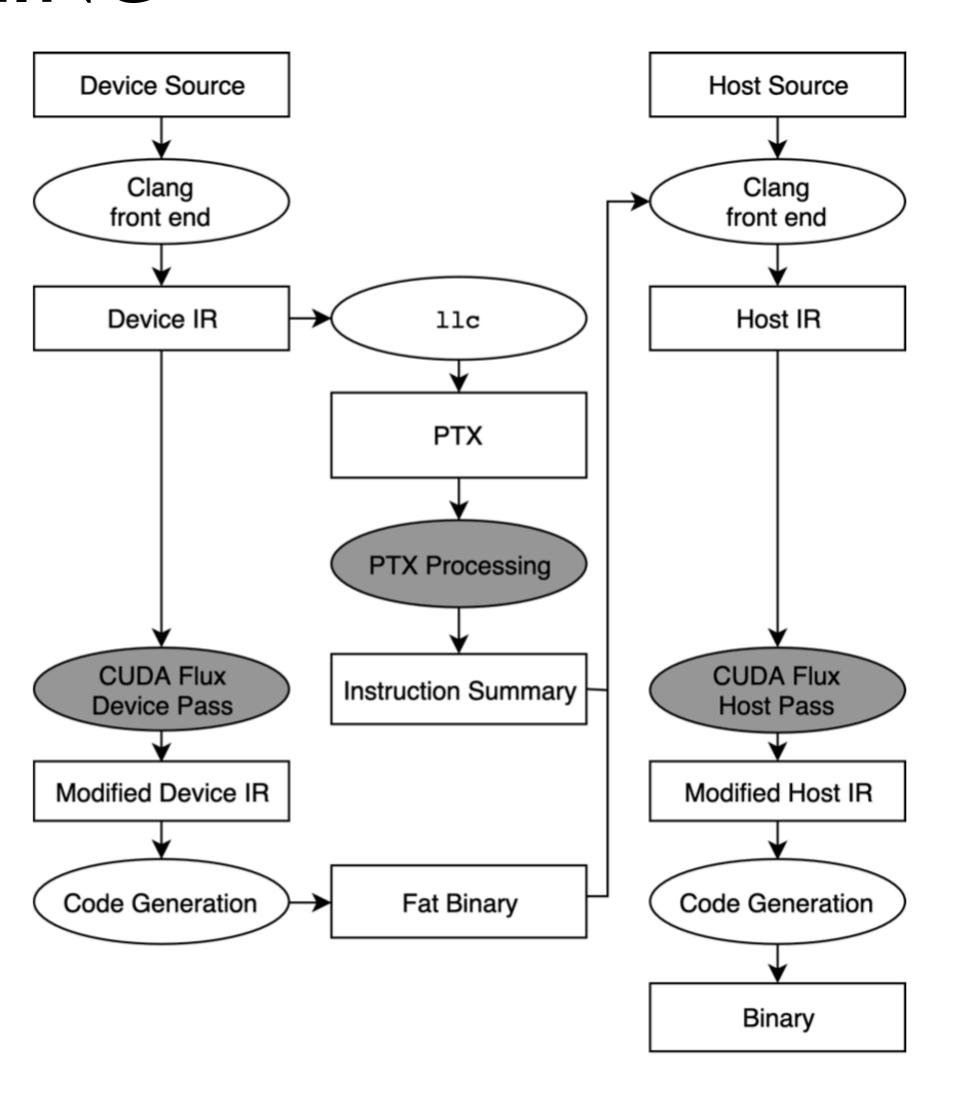
Host pass: link host code to runtime

PTX processing

Iterates over all kernels

Produces a PTX block summary containing instructions counts of all basic blocks

Flexible: instrumentation on either warp-level, CTA-level or full thread-grid



COMPUTING INSTRUCTIONS ON PTX LEVEL

Each basic block (BB) is instrumented

Begin of BB = branch target, no branches/jumps inside a BB except for end of BB

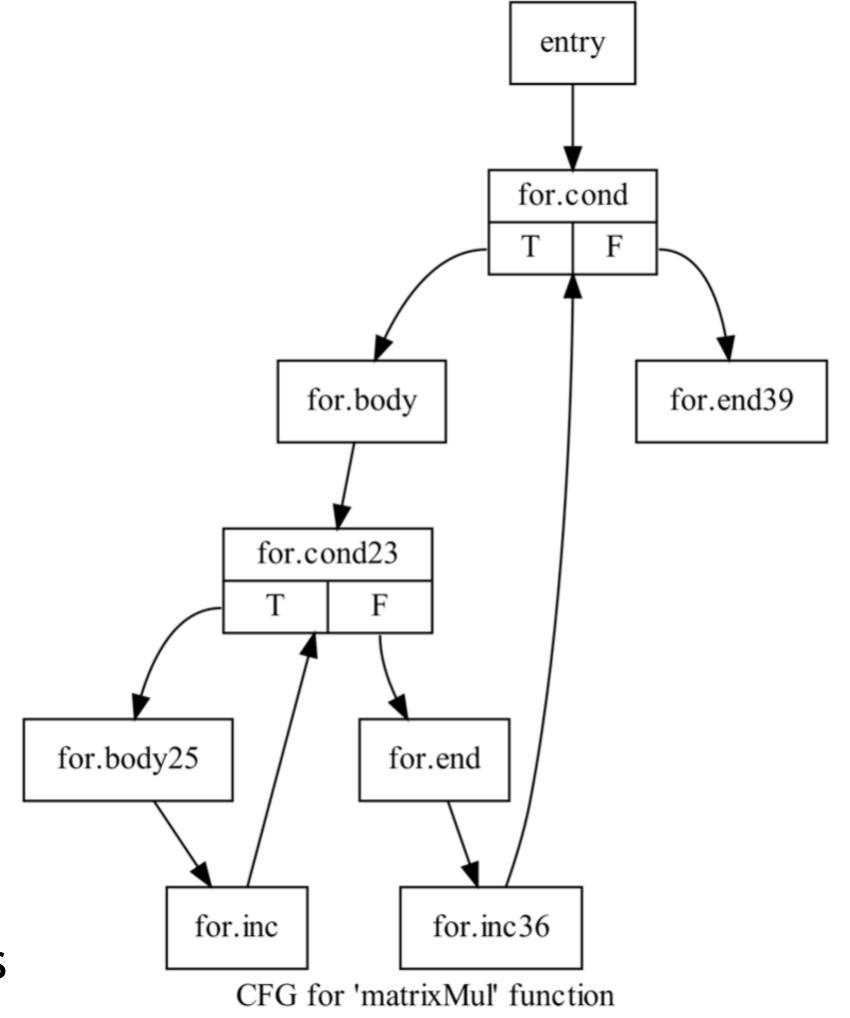
On entering a BB the corresponding counter for the block is increased

After kernel execution: PTX instruction counters are calculated using BB counter and the PTX instruction summary

Advantages

Fine grained profiling

Time does not depend on number of metrics monitored PTX is an accessible intermediate assembly for CUDA GPUs



LIMITATIONS

Profiling on PTX level, not SASS

Closer to high-level code, farer away from hardware

Kernel definition and kernel launch need to be in the same compilation module

Modification of build system needed (in majority of cases):

Change nvcc to clang++

Non compatible compiler flags

Easy on good/simple build systems, error-prone on complicated build systems

Instrumentation takes place at IR level

Texture memory is not supported (clang limitation)

PERFORMANCE EVALUATION

CUDA Flux vs. nvprof using the Polybench-GPU Benchmark

Measurements on NVIDIA Tesla K20 and Titan Xp

Only kernel time is measured using a median of five executions

Four different profiling configurations

flux_warp: all threads of one single warp

flux_cta: all threads of one single CTA (aka. thread block)

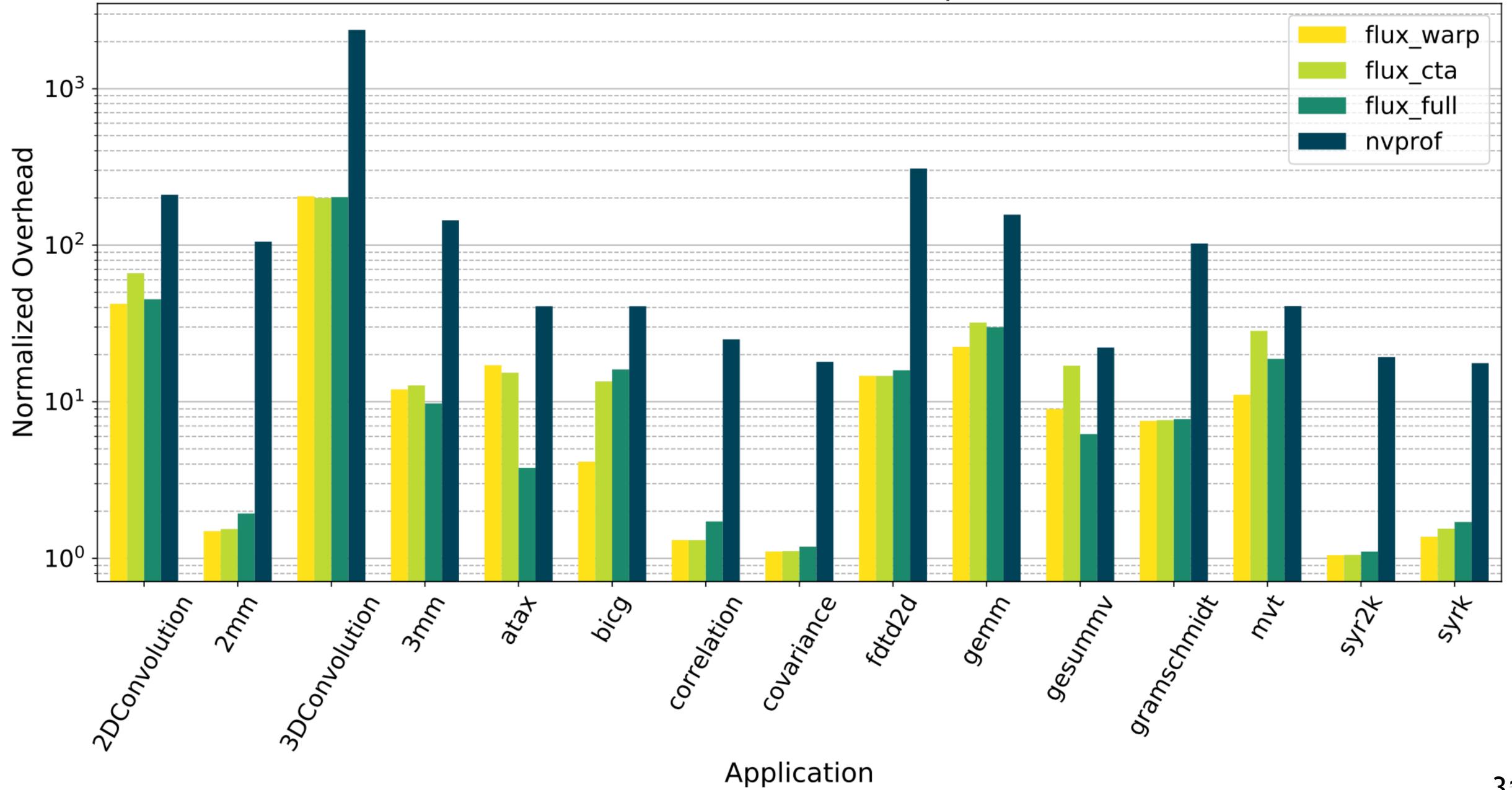
flux_full: all threads of the complete thread grid

nvprof: measurement with 8 different metrics instruction counter metrics

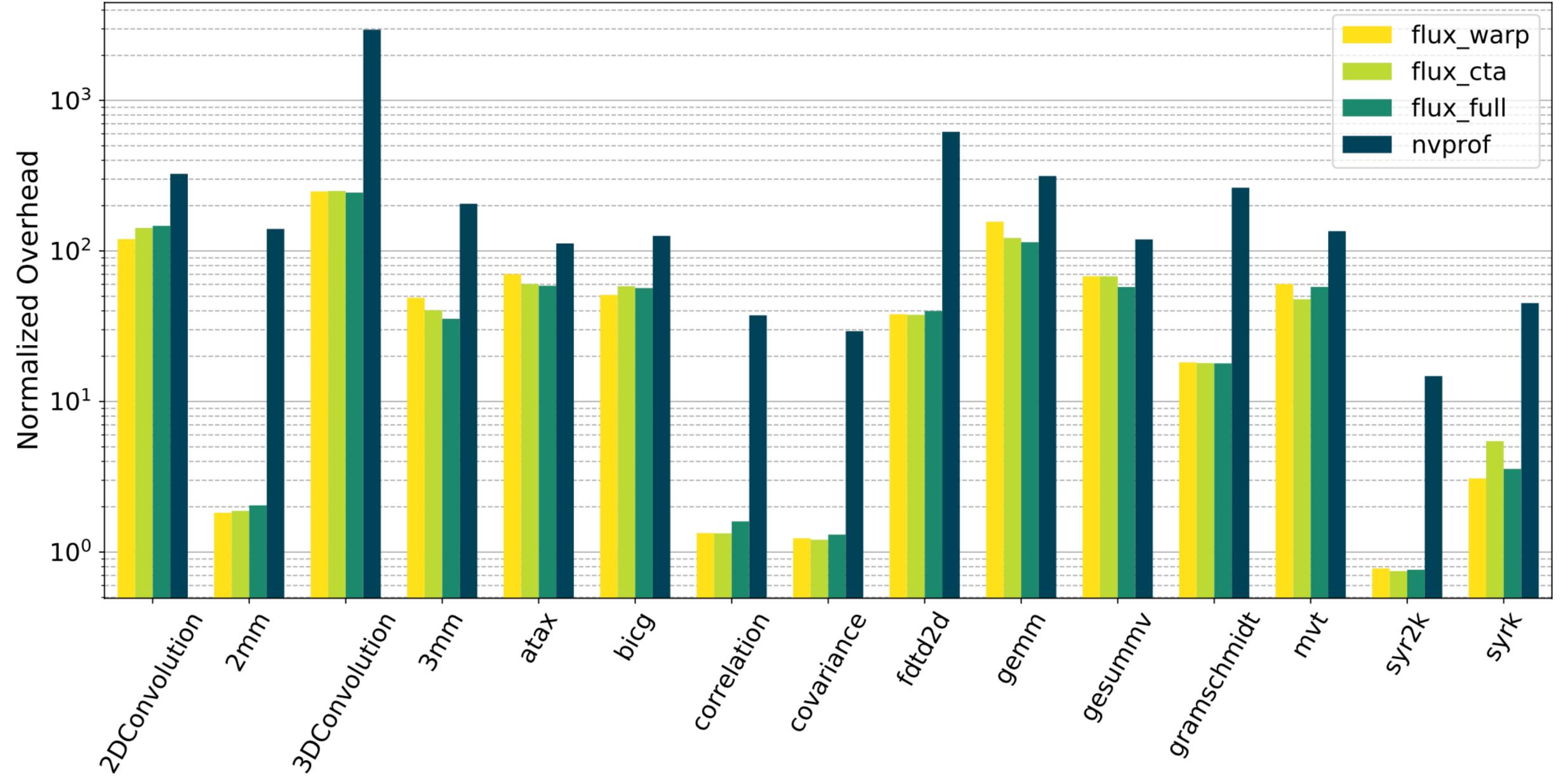
Baseline measurement without any instrumentation or profiling is used to normalize the results

Open-Source: available on github: https://github.com/UniHD-CEG/cuda-flux and available in the lab (module load cuda_flux)

Normalized Execution Time Comparison - K20



Normalized Execution Time Comparison - TitanXp



WRAPPING UP

SUMMARY

Models help us to understand performance based on application behavior

Roofline model

3C model

Profiling helps us to understand code behavior in detail

Usually based on hardware performance counters, but that's expensive

Tools: Nsight, nvprof, CUDA Flux, etc.

Methodology: Model/Intuition/Hypothesis -> Experiment design -> Profiling -> Analysis

Excursion: Predictive performance modeling

Reasoning about performance of application and/or processor without executing it (at least not on every combination of the tuple)

Execution statistics & HW characterization = performance (time, power, energy) prediction

EXCURSION: (PREDICTIVE) PERFORMANCE MODELING

PERFORMANCE MODELING

	Speed	Ease	Flexibility	Accurracy	Scalability
Ad-hoc Analytical Models	1	3	2	4	1
Structured Analytical Models	1	2	1	4	1
Functional Simulation	3	2	2	3	3
Cycle accurate Simulation	4	2	2	2	4
HW Emulation (FPGA)	3	3	3	2	3
Similar hardware measurement	2	1	4	2	2
Node Prototype	2	1	4	1	4
Prototype at Scale	2	1	4	1	2
Final System	_	_	_	_	_
Learning-based Models	1	2	1	2	1

HETEROGENEITY AND PORTABILITY

Predictions about execution time and power consumption

Runtime/scheduling decisions

Provisioning decisions

Performance portability explorations

State-of-the-art: 25 publications investigated

Methods: analytical (9) vs. learning (10) vs. others

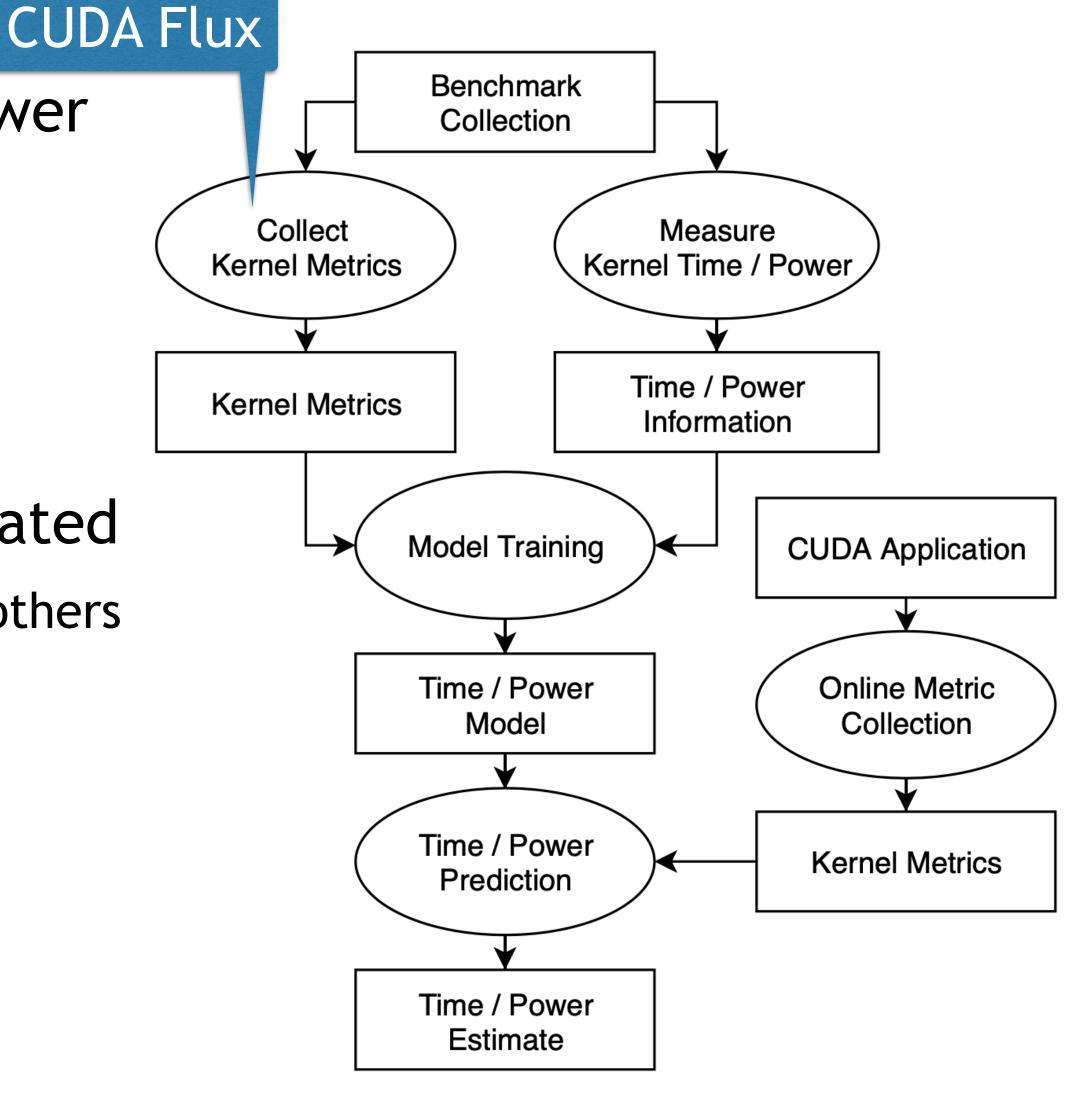
Representativeness (1-169 kernels/apps)

Portability (1-9 GPUs)

Availability (only 2 models published)

DVFS support (6)

Time (21); power consumption (10)



GPU MANGROVE: PORTABLE, FAST, SIMPLE

Which metrics make good features?

Instructions executed

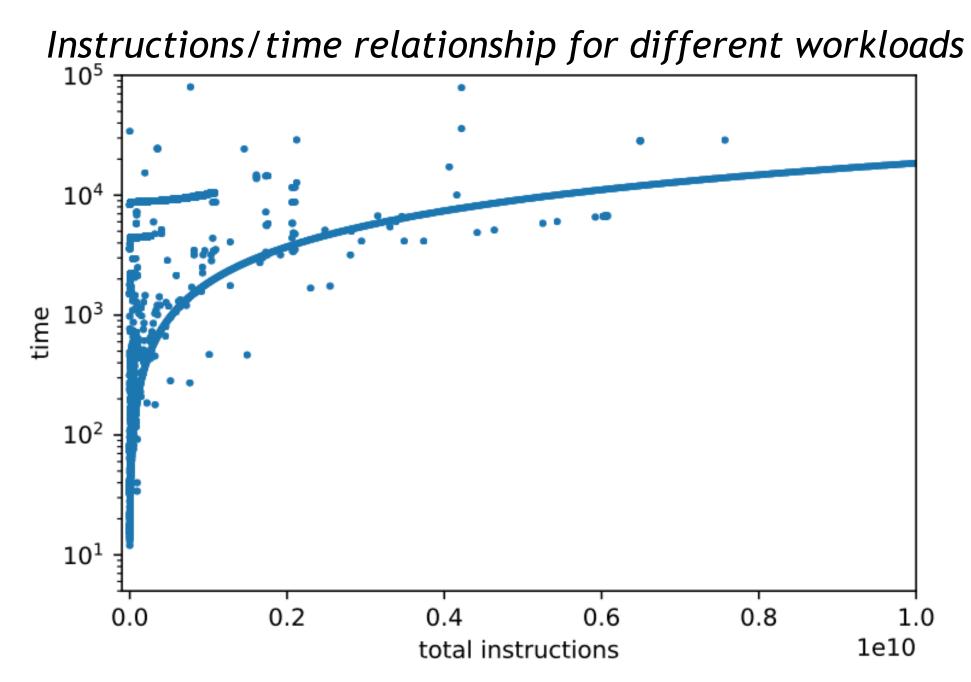
FLOPs

Memory footprint

Kernel launch configuration

Computational intensity

Synchronizations



Portable code features only depend on the kernel and the data handed to it

Hardware metrics like cache-hit rates not allowed

Creation of models for new GPUs requires only time and power measurements

Instruction statistics are essential; represent actual work of the processing units

GPU MANGROVE: GPU MANGROVE: PORTABLE, FAST, SIMPLE PERFORMANCE PREDICTION

RandomForests

Light computational workload

Likely to over-fit (but can be improved by training method)

Works well with even few samples

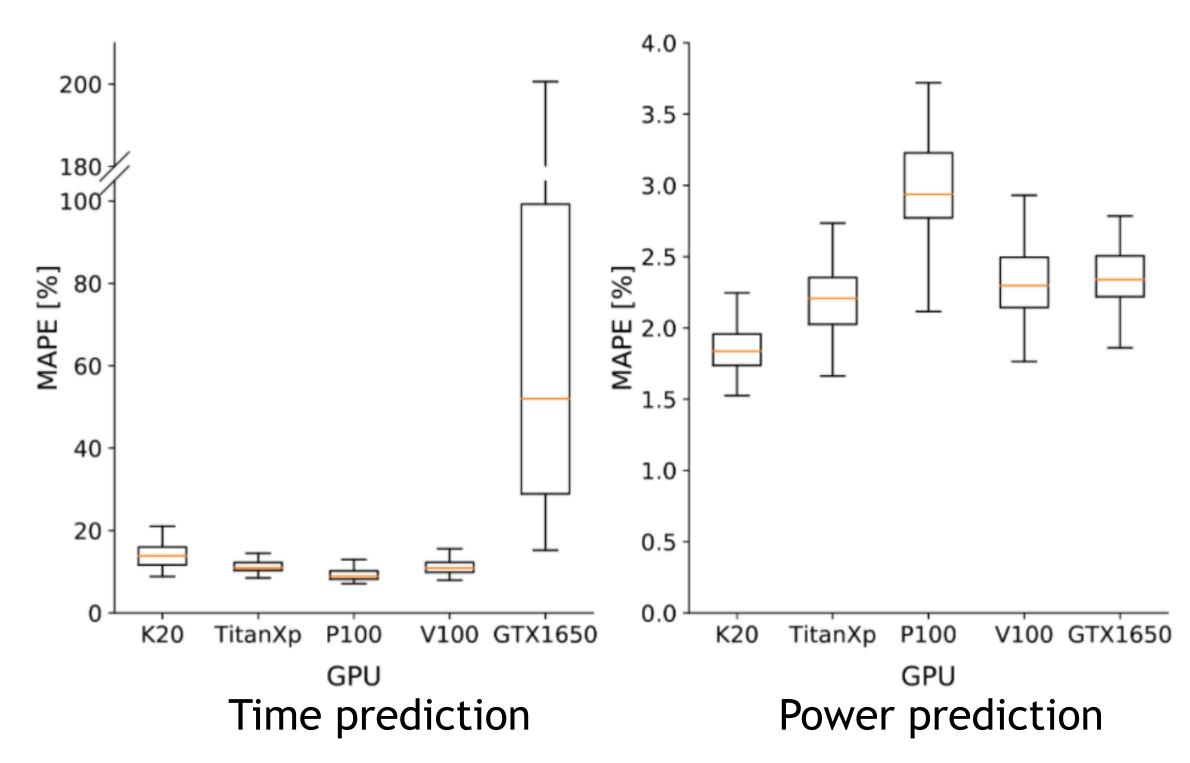
Interpolation outside range of training data is difficult

<u>Methodology</u>

189 unique kernels from Parboil, Rodinia, Polybench-GPU and SHOC

Prediction accuracy: 8.86-52.0% for time, 1.84-2.94% for power, across five different GPU

Prediction latency: 15-108ms (not optimized)



BACKUP / VOLTA

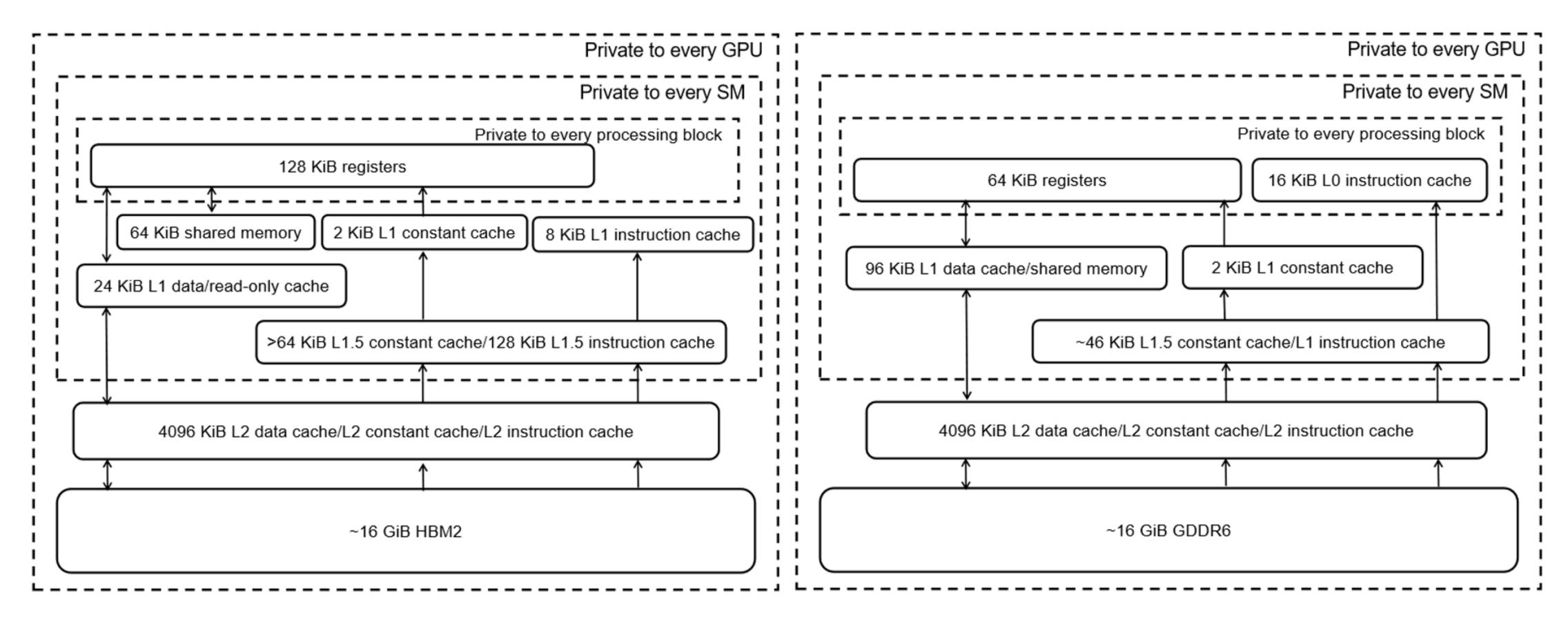


Figure 3.3: Memory hierarchy of the Pascal P100 GPU (GP104).

Figure 3.1: Memory hierarchy of the Turing T4 GPU (TU104).