GPU COMPUTING
LECTURE 08 - N-BODY METHODS

Kazem Shekofteh
Kazem.shekofteh®@ziti.uni-heidelberg.de
Institute of Computer Engineering
Ruprecht-Karls University of Heidelberg

Inspired from lectures by Holger Froning

Partially based on “CUDA Handbook” by Nicholas Wilt

(MORE) CODE OPTIMIZATIONS

Case study: n-Body Particle Computations in Physics

ARRAYS OF STRUCTURES (AOS)

struct {
float x, vy, z;
float vx, vy, vz;
float mass;

b p oty
Memory access is one of the most

p t particles [MAX SIZE];

expensive operations

Data is grouped per element index, —,
different types next to each other

Element #0

Typical in most applications

Element#1
~

STRUCTURE OF ARRAYS (SOA)

struct {
Data is grouped per element type, float x [MAX SIZE],
. . : ‘MAX SIZE],
elements distributed among different . [MAX SIZE] .
1 1 float vx [MAX SIZE],
arrays with the same index vy (MAx SI2E).
Many pointers required vz [MAX_SIZE];
float mass [MAX SIZE];
=> Register use bop_ts
Typical for GPU applications p_t particles;
Multiple threads are accessing memory Array x Array y Array 2
concurrently
X VY Z ement #0
Thread organization affects memory X Y : ement #1
performance X | Y | B SN 2

SOA better for regular memory access pattern

REMINDER: COALESCING

Coalesced: when the memory access issued by multiple threads is
ordered in a way that consecutive addresses are used, so that

multiple accesses can be translated into one single memory
transaction

Non-coalesced: when multiple memory transactions are required to

fulfill the memory access requests, or when a transaction is not
completely utilized

Performance penalty highly depends on access pattern

NON-COALESCED AOS VS COALESCED SOA
Single thread X |y z|m
Ho04

X y|z|/m Access order

Multiple threads

0000000000000004
g

Single thread

6 & 4
0000000000000004

Multiple threads

COALESCED AQS - PACKED VALUES

. Access order
ﬁ
floatd = ()

Single thread

2004
0000000000000004

Multiple threads

TRADING MEMORY VS COMPUTE

Using more memory to reduce the compute pressure
Look-up tables

Precompute certain values for re-use

Use more computing to reduce memory pressure

Reorder elements/computations to improve locality (increased control flow
complexity)

Improve memory coalescing
No re-use of values, recomputing instead (GPU cycles are cheap)

Optimizations targeting compute instructions useless for memory-
bound applications and vice versa

REMINDER: TILING

Divide a long repetitive process in
regular iterative blocks

Limiting the amount of resources required

Making computation and memory access
(more) regular

Making the computation independent of
the actual problem size (for many/most
workloads)

Many operations are associative
a+((b+c)=(@+b)+c
So feel free to reorder multiply operations
Goal: increase data reuse

grid = 3x3 blocks

TILE_WIDTH

Memory coalescing
Latency hiding

Algorithmic optimizations

Shared memory
SOA/AQS

OPTIMIZATIONS

CUDA performance issues

Instruction overhead

Divergent branching Bank conflicts

Optimizations

Kernel launch optimizations

Optimizations

Tiling Compute-/
Memory-bound

Code optimizations

Loop unrolling
Templating

10

N-BODY PARTICLE COMPUTATIONS

N-BODY SIMULATIONS

1CX0 ¢ L1FFY 1GID
Modeling bi lecul t 3 oo, AV AN e Qo
odeling biomolecular systems D b, DR RS TR
i Y- & Soti fioat), AU A
: O T : PNARANEG T SR
Electrostatic and Van der Waals forces §r g
~ T Y\
. J o/’\‘ ‘ \"}?E d ..:',P \;"'\,'. ‘ | \ zzr\ :
Time scale of 1fs (10-13s) § vl | I Ll
S EATNN PRI ([
’ 7 %l

Example workload: Satellite Tobacco T N o

Mosaic Virus (STMV)

T
. , ({ "..‘ { ~ ¥ Je {"‘_ Aol
3 A P adiee LilRs
_g e - | .\ (b/\ 1}..! -é’nx}/. A _{i /«;’,‘f.;: ?”{f’:’ﬁ:‘\ \
I \.‘ " \. & ..‘,‘ ‘ (yJ ‘ ": » l?' . k"“

100M atoms, 160 genes s . m e, fOrurd R
§ oG, et “.::9';,;», SHe, YN

: : : 2 SNACELTL i 37 el ey o i

Petascale-class: 100ns/day of simulation time 3 Vel FrnSa MR P

Complex structures like parasites: ~ 6k ft* '::’i’: Q

genes

DDD
o
of
\ J
O\®
-t
e
P
‘h
éo
Y;“
"x
."
:
~
25
<
{
oL

Figure 8. Comparison of ion placement test cases used in this study with crystal ions. Structures arce
arranged in columns, from left to right, hepatitis delta virus ribozyme (1CX0), tRNA-Ile/synthetase

1 4OOX ru n t'i m e 'i n C rease (-IFFY), and P4-P6 ribolenc domain (IGlD).. The crystal structure is shown at the top of ca.ch columlﬁl.

followed by placement with the APBS, Hybrid, Coulomb, and DDD methods (sece Table 8 for abbrevi-
ations). [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.
com.]

Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. 2007. Accelerating molecular
modeling applications with graphics processors. J Comput Chem. 2007 Dec;28(16):2618-40.

12

N-BODY SIMULATIONS

t =1.83 ms t =2.59 ms t =3.78 ms

Astrophysics: galaxy
simulations

Gravitational forces

t = 6.60 ms [= 7.56 s t =11.34 ms

Smoothed particle
hydrodynamics (fluids)

Contributed to the discovery
of dark energy
1990°s at LBNL

Gravitational waves of the collision of two neutron stars

Source: ucsc.edu

13

N-BODY SIMULATIONS

. d*x (1)
Newton’s second law of motion F(x(t)) =m

2
Approximating the solution of the differential equatmn by temporal at
discretization
-> Simulation based on time steps vl

Each time step costs O(N2) operations, N = body count /SN s
Computational bound as memory costs are O(N) © e

Forces decrease quickly with distance -> hierarchical algorithms
Within clusters all-pair methods; for k bodies: O(k2) -> very suitable for GPUs

Far-field approximations

Barnes-Hut algorithm based on spatial hierarchy between clusters of objects: O(N*log(N))
Fast multipole method

14

N-BODY EXAMPLE FORMULA

mimj Cl@'j

N bodies with positions x and velocities v, forces fii=G - .
i 1) T 2
caused by gravity are H dz’j H Hdij H
To avoid divide overflow, introduce softening factor fii=G. g dz‘j
1)
(|l + €2)>
Total force N N p
o Fi= fy=Gmiy g
J 2 2 3
=1 =1 (lds ™[] +¢2)3
Leapfrog verlet algorithm updates velocity, then
position 1 1 F;
See also Noether's theorem (but only for continuous 1
settings) X (?f -+ 5?5) — Xy (75) -+ 0t - U; (t | 25?5)

(https://en.wikipedia.org/wiki/Noether%2/s_theorem)

15

https://en.wikipedia.org/wiki/Noether%27s_theorem

GPU IMPLEMENTATION OPTIONS

Partitioning: one thread per body G Q P
Communication — v, o
"
Optimize for data re-use @ .
Y O\
C e
_9/
2 approaches here: N N mid;,
o . F.:Zf..:Gm,Z
Naive implementation ¢ tJ z 2 9\ 3
P =1 =1 (Hdij H T €)2

Tiled implementation (shared
memory)

(Constant memory implementation)

(Warp shuffle implementation)

16

FORCE MATRIX

N x N grid of pair-wise forces

Resp. accelerations

Symmetry reducing computations by
half

fo2 = -f20
Partial sums required
Temporary locations or mutual exclusions

-> Qverhead often overwhelms the
benefits

Partitioning alternative: one thread
per force?

Global sum at the end -> synchronization |

'
\ ,
=2 fao 9 Q 2 fa
N\
N
1) fo M faz FOQ

17

NAIVE GPU IMPLEMENTATION

Kernel for body-body
interaction

Calculating fj;
16 SP FLOPs

| 0 —)} o —ﬁ 4 ﬂ 4 }) fos

f10 —A 0 _# 15 _) 13 _) f14 '_)

e H M He o

'_Af _)fs.;'_)o_)f _)

f.’.zj ‘4 f.’.; '% f:.; e f.’.g; % O H

__host

device

float
float
float

float

dx = x1

dy = vyl
dz 71

distSqgr

vold bodyBodylInteraction(...)

- x0;

— yO;
- z0;

= dx*dx + dy*dy + dz*dz;

distSgr += softeningSquared;

float

float
float

*fx
*fy —
*fz

invDist

invDist
S = mas

dx * s;
dy * s;
dz * s;

= rsqgrtf (distSqgr) ;

Cube = 1nvDist * 1nvDist * i1invDist;

sl * 1nvDistCube;

18

NAIVE GPU IMPLEMENTATION

Code for gravitational
forces for each body

AOS packed

float4 means 16B load
instructions

Casting to ensure this

Inner loop with good
data re-use

How many threads
access the same data?

Cache benefits for SM
2.x and later

~_global void ComputeNBodyGravitation GPU AOS

(float

*force, float *posMass, size t N, float softeningSquared)
{
for (1nt 1 = blockIdx.x*blockDim.x + threadIldx.x;
1 < N;
1 += blockDim.x*gridDim.x) {
float acc[3] = {0};
floatd4d me = ((floatd4 *) posMass) [1];
float myX = me.x; float myY = me.y; float myzZz = me.z;
for (int 7 = 0; 7 < N; J++) {
floatd4d body = ((floatd4 *) posMass) []];
float f£x, fty, f£z;
bodyBodyInteraction (
&fx, &fy, &fz, myX, myY, myZ,
body.x, body.y, body.z, body.w,
softeningSquared) ;
accl[0] += fx; accl[l] += fy; accl[2] += fz;
}
force[3*1+0] = acc[0];
force[3*1+1] = accl[l];
force[3*1+2] = accl[2];

J

19

NAIVE GPU IMPLEMENTATION

Loop unrolling reduces branch overhead => insert unroll pragma

#pragma unroll 1 will prevent the compiler from ever unrolling a loop.

If no number is specified after #pragma unroll, the loop is completely
unrolled if its trip count is constant, otherwise it is not unrolled at all.

Optimal unrolling factor has to be determined empirically

Body-body interactions
per second [G]

Version Unroll factor

1 (no unrolling)
2 30

10 34,3

20

OPTIMIZATIONS?

N body descriptions

v

Sequential
—>

Force matrix of NxN

Caches already exploit locality

Shared memory will further improve
this

Parallel

Tiling as an optimization

Make computations and memory
accesses more regular

Updated accelerations

N body descriptions; accelerations=0

21

TILING

N body descriptions

v

Sequential
—>

Tile NxN matrix into sub matrices
with height of p

Block size = p

Each thread computes N interactions
for one body

v

Updated accelerations

Parallel

Submatrix width of p

After p steps, reload shared memory

Cooperative loads
Data re-use

N body descriptions; accelerations=0

22

TILING

p body descriptions p body descriptions p body descriptions

\ 4 v v

>
SN SR

Load shared memory and synchronize threads

Updated accelerations

N body descriptions; accelerations=0

23

OPTIMIZED GPU IMPLEMENTATION

~ _global wvoid ComputeNBodyGravitation Shared float *force, float *posMass, float
softeningSquared, size t N) {
extern shared float4 shPosMass [] ;
for (1nt i = blockIdx.x*blockDim.x + threadIdx.x; 1 < N; 1 += blockDim.x*gridDim.x) {
float acc[3] = {0};
float4 myPosMass = ((float4d *) posMass) [1i]; outer lOOp that strides
#pragma unroll 32 through bodies
for (int 73 = 0; J < N; 7 += blockDim.x) {
shPosMass[threadIdx.x] = ((float4 *) posMass) [j+threadIdx.x];
~__syncthreads () ;
for (size t k = 0; k < blockDim.x; k++) { inner loop that iterates
tloat tx, Ly, fz; over body descriptions
float4 bodyPosMass = shPosMass[k];
bodyBodyInteraction (

&tx, &fty, &tz,
myPosMass.x, myPosMass.y, myPosMass.z, bodyPosMass.x, bodyPosMass.y,
bodyPosMass.z, bodyPosMass.w, softeningSquared);

acc[0] += fx; accl[l] += fy,; accl[2] += fz;

~_syncthreads () ;
J

force[3*1+0] = acc[0]; force[3*1+1] = acc[l]; force[3*1+2] = accl[2];

OPTIMIZED GPU IMPLEMENTATION

Body-body
interactions per

Loop unrolling helps again

Empirical determination

Scales easily further with multiple
GPUs

Strong scaling (scales with fixed
problem size)

Version

GPU
haive

Unroll factor

1 (no unrolling)
2
16

1 (no unrolling)

second [G]

34,3
38,2
44,5
42,6
45,2

25

OPTIMIZED CPU IMPLEMENTATION

inline void bodyBodyInteraction(ml23&
fx, ml28& fy, ml28& fz, const ml23&
x0, const ml28& y0, const mlz28& zO,
const mlZ28& x1, const ml28& yl, const
. ml28& zl, const ml28& massl, const

. ml28& softSquared)

{

// r 01 [3 FLOPS]

- ml28 dx = mm sub ps(x1, x0);

- ml28 dy = mm sub ps(yl, y0);
mlz28 dz = mm sub ps(zl, z0);

// d*"2 + e”2 [6 FLOPS]
- ml28 distSg =
- mm add ps(
-~ mm add ps(
~mm mul ps(dx, dx),
~mm mul ps(dy, dy)
) 1
~mm mul ps(dz, dz)

) ;

distSg = mm add ps(distSg,softSquared);

// invDistCube =1/distSqgr” (3/2) [4 FLOPS]
- ml28 1invDist = rcp sgrt nr ps(distSqg);
- ml28 1nvDistCube =
~mm mul ps(
invDi1st,
- mm mul ps(
invDl1st, 1nvDist)

// s = m j * invDistCube [1 FLOP]

- ml28 s = mm mul ps(massl,invDistCube);
// (m 1 * r 01) / (d*2 + e"2)"(3/2) [6
FLOPS]

fx = mm add ps(fx, mm mul ps(dx, s))7
fy = mm add ps(fy, mm mul ps(dy, s))
fz = mm add ps(£z, mm mul ps(dz, s));

SSE: 128bit XMM registers -> SOA

Multi-threading not shown

26

SCALAR OR VECTOR VIEW?

1. Right vector size
2. Dynamic instruction selection

Uniform, linear, varying thread of control
3. Semantic model for compiler

Intra-thread model = dependencies (5C), optimizer aware, good code quality

SC only within one

Inter-thread model = DRF memory, optimizer aware, good code quality
=> Scalar compiler sees only dependencies and DRF memory

=> Vector compiler sees mixture of SC and DRF

DRF among threads

4. C++ is for scalars (since C++11)
GPU: C++, scalar compiler, scalar ISA, thread virtualization, vector units

CPU: C++/V-C++, scalar/vector compiler, scalar/vector ISA, scalar/vector units

SIMT (change vectors for C++) vs SIMD (change C++ for vectors)

27

OPTIMIZED CPU IMPLEMENTATION

Body-body
Version Unroll factor interactions per
second [G]

GPU 1 (no unrolling)
. 1 ENYE 5
Expect a strong scaling for

multiple cores 16 34,3
. GPU 1 (no unrolling) 38,2

Performance comparison shmem ine
Intel E5-2670 CPUs 426
GK104 GPUs 45 2

CPU naive, single threaded 0,017

CPU SSE, single threaded 0,307

CPU SSE, 32 threads 5,650

28

WRAPPING UP

SUMMARY

N-Body computations a prime example for GPUs
Different optimizations helpful

Loop unrolling and shared memory

Skipped here: warp shuffle instruction
Communication within thread warps: shfl () intrinsic
Latency of about a shared memory read
Need to tile computation at warp size, rather than CTA size
No performance benefits here (about 25% slower than shared memory)

Skipped here: constant memory

Host-GPU context switches required per iteration to reload constant memory

N-Body is also a great example for CPU/GPU code complexity

30

