
GPU COMPUTING

LECTURE 10 - PRODUCTIVITY

Kazem Shekofteh

kazem.shekofteh@ziti.uni-heidelberg.de

Institute of Computer Engineering

Ruprecht-Karls University of Heidelberg

Inspired from lectures by Holger Fröning

With material from Sandra Wienke, RWTH Aachen (OpenACC)

OPENACC - DIRECTIVE-BASED
ACCELERATOR PROGRAMMING

OVERVIEW

Up to now: CUDA (& OpenCL)

No major differences, both regarding usage and performance

Quite unproductive development process

As for any imperative programming language

Alternative: directive-based programming

Compiler responsible for low-level implementation

Kernel execution, data movements, optimizations, …

Declarative programming language (like OpenMP)

OpenACC: directive-based programming model to off-load compute-
intensive loops to accelerators

3

OVERVIEW

Goal: simplify parallel programming of heterogeneous CPU/GPU
systems

Open industry standard

Cross-platform, C/C++/Fortran

Several vendors

Currently: Cray, CAPS, OpenARC, NVIDIA, PGI

First specification in 2011, first compilers in 2012

Another objective: mid-term integration into OpenMP resp. extending
OpenMP by lessons learned with OpenACC

4

EXECUTION MODEL
Execution model: host-directed execution with an attached accelerator device

Offloading compute-intensive regions (parallel region or kernel region)

Three parallelism levels

Coarse-grain parallelism: fully parallel execution across execution units -> gang parallelism

Limited support for synchronization

CUDA: multiple thread blocks -> grid level

Fine-grain parallelism: multiple threads on a single execution unit -> worker parallelism

Latency hiding techniques

CUDA: warps at block level

SIMD/vector operations: multiple operations per thread -> vector parallelism

CUDA: threads at block level

Programmer has to identify appropriate parallelism type

Fully-parallel loop (no dependencies) -> gang

Vectorizable loop but with dependencies -> fine-grain parallelism, or sequential implementation

5

MEMORY MODEL

Accelerator may be completely separate from host memory -> explicit
data movement using DMA

CUDA/OpenCL: user is responsible and resulting code can be complex

Memory model for OpenACC

Compiler is responsible for data movements (with the help of directives)

Issues: PCI: bandwidth disparity (computational intensity), limited
device memory, dereferencing host/device pointers

Weak consistency model

Support for software-controlled caches (scratchpad): SHARED MEM

Managed by compiler instead of programmer (as for CUDA/OpenCL)

6

DIRECTIVES

Simplified execution and memory model

-> Many tasks can be done by compiler/runtime

-> User-directed programming

Iterative development process

Compiler provides helpful feedback about implementation

If accelerator kernels could be generated

Which loop schedule is used

Data movement

7

C

#pragma acc directive-name [clauses]

Fortran

!$acc directive-name [clauses]

EXAMPLE: SAXPY – SERIAL (HOST)

8

int main() {

 int n = 256*1024*1024; float a = 2.0f; float b = 3.0f;

 float* restrict x; float* restrict y;

 // Allocate & initialize x, y

 <snip>

 for (int i = 0; i < n; ++i) {

 y[i] = a*x[i] + y[i];

 }

 for (int i = 0; i < n; ++i) {

 y[i] = b*x[i] + y[i];

 }

 //free and cleanup

 <snip>

}

int main() {

 int n = 256*1024*1024; float a = 2.0f; float b = 3.0f;

 float* restrict x; float* restrict y;

 // Allocate & initialize x, y

 <snip>

#pragma acc kernels

{ //26

 for (int i = 0; i < n; ++i) { //27

 y[i] = a*x[i] + y[i];

 }

 for (int i = 0; i < n; ++i) { //31

 y[i] = b*x[i] + y[i];

 }

}

 //free and cleanup

 <snip>

}

GCC COMPILER FEEDBACK

$ gcc -Wall -O2 openacc-saxpy_01.c -o openacc-
saxpy_01gcc

openacc-saxpy_01.c:25: warning: ignoring #pragma
acc kernels [-Wunknown-pragmas]

=> exactly same as without pragmas

EXAMPLE: SAXPY – OPENACC #1

9

PGI COMPILER FEEDBACK

$ pgc++ -O2 -acc -ta=tesla,time -Minfo=accel -g
openacc-saxpy_01.c -o openacc-saxpy_01pgc

main:

 26, Generating implicit copyin(x[:268435456])
[if not already present]

 Generating implicit copy(y[:268435456])
[if not already present]

 27, Loop is parallelizable

 Generating Tesla code

 27, #pragma acc loop gang, vector(128) /*
blockIdx.x threadIdx.x */

 31, Loop is parallelizable

 Generating Tesla code

 31, #pragma acc loop gang, vector(128) /*
blockIdx.x threadIdx.x */

Without async clause:
implicit barrier at the end

EXAMPLE: SAXPY – OPENACC #1

10

int main() {

 int n = 256*1024*1024; float a = 2.0f; float b = 3.0f;

 float* restrict x; float* restrict y;

 // Allocate & initialize x, y

 <snip>

#pragma acc kernels

{ //26

 for (int i = 0; i < n; ++i) { //27

 y[i] = a*x[i] + y[i];

 }

 for (int i = 0; i < n; ++i) { //31

 y[i] = b*x[i] + y[i];

 }

} //34

 //free and cleanup

 <snip>

}

$./openacc-saxpy_01pgc

<snip>

 26: compute region reached 1 time

 27: kernel launched 1 time

 grid: [65535] block: [128]

 elapsed time(us): total=6,005 <snip>

 31: kernel launched 1 time

 grid: [65535] block: [128]

 elapsed time(us): total=5,987 <snip>

 26: data region reached 2 times

 26: data copyin transfers: 128

 device time(us): total=171,564 <snip>

 34: data copyout transfers: 65

 device time(us): total=82,314 <snip>

EXAMPLE: SAXPY – OPENACC #2

11

<snip> //21

#pragma acc parallel loop

 for (int i = 0; i < n; ++i) { //26

 y[i] = a*x[i] + y[i];

 }

#pragma acc parallel loop //30

 for (int i = 0; i < n; ++i) { //31

 y[i] = b*x[i] + y[i];

 }

PGI COMPILER FEEDBACK

 21, Generating Tesla code

 26, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 21, Generating implicit copyin(x[:268435456]) [if not already present]

 Generating implicit copy(y[:268435456]) [if not already present]

 28, Generating Tesla code

 31, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 28, Generating implicit copy(y[:268435456]) [if not already present]

 Generating implicit copyin(x[:268435456]) [if not already present]

Parallel construct: each gang executes the code
in gang-redundant mode

-> code within the parallel region, but outside of
a loop with a loop directive and gang-level work-
sharing, will be executed redundantly by all gangs

EXAMPLE: SAXPY – OPENACC #3

12

#pragma acc data copyin(x[0:n]) copy(y[0:n])

{ //25

#pragma acc parallel loop present(x,y)

 for (int i = 0; i < n; ++i) { //27

 y[i] = a*x[i] + y[i];

 }

#pragma acc parallel loop present(x,y) //31

 for (int i = 0; i < n; ++i) { //32

 y[i] = b*x[i] + y[i];

 }

}

PGI COMPILER FEEDBACK

 25, Generating copy(y[:n]) [if not already present]

 Generating copyin(x[:n]) [if not already present]

 Generating present(y[:],x[:])

 Generating Tesla code

 27, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

 29, Generating present(y[:],x[:])

 Generating Tesla code

 32, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

EXAMPLE: SAXPY – OPENACC #4

13

#pragma acc data copyin(x[0:n]) copy(y[0:n])

{

#pragma acc parallel loop vector_length(256)

 for (int i = 0; i < n; ++i) {

 y[i] = a*x[i] + y[i];

 }

#pragma acc parallel loop vector_length(256)

 for (int i = 0; i < n; ++i) {

 y[i] = b*x[i] + y[i];

 }

}

PGI COMPILER FEEDBACK

 25, Generating copyin(x[:n]) [if not already present]

 Generating copy(y[:n]) [if not already present]

 Generating Tesla code

 27, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */

 29, Generating Tesla code

 32, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */

PERFORMANCE RESULTS

14

CPU (00) ACC01 ACC02 ACC03 ACC04 ACC01UM

kernel1 [ms] 6,0 6,0 6,0 5,8 372,5

kernel2 [ms] 6,0 6,0 6,0 5,8 5,9

sum copies [ms] 253,9 507,4 253,7 253,8 0,0

total [ms] 286,5 265,9 519,4 265,7 265,4 378,4

GB/s (256M elem) 3,7 4,0 2,1 4,0 4,0 2,8

How to use UM: -ta=tesla:managed,time

There’s more: {pinned, managed, autocompare}

DIRECTIVES: OFFLOAD REGION
Offload Region <=> CUDA Kernel function

Parallel

User responsible to find parallelism (loops)

More explicit

acc loop directive mandatory

No automatic synchronization between loops

Kernels

Compiler responsible to find parallelism
(loops)

More implicit, more compiler freedom

acc loop directive only for performance
tuning

Automatic synchronization between loops

15

#pragma acc parallel [clauses]

{

 <seq. code>

 for (int i = 0; i < n; ++i) {

 }

 for (int i = 0; i < n; ++i) {

 }

}

#pragma acc kernels [clauses]

{

 <seq. code>

 for (int i = 0; i < n; ++i) {

 }

 for (int i = 0; i < n; ++i) {

 }

}

THE PARALLEL DIRECTIVE IN DETAIL
1. Distributes outer loop to n threads

Each thread executes inner loop sequentially

256 threads per block

n/256 (rounded up) blocks

2. Similar to above, but fixed number of
blocks (16)

256 threads per block

If 16*256 < n then each thread gets multiple loop
iterations

3. Now parallelizing both loops

Distributing n outer loops to n blocks

Distributing inner loop to threads within these
blocks

256 threads per block

16

#pragma acc parallel vector_length(256)

#pragma acc loop gang vector

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < m; ++j) {

 // do something

 }

 }

#pragma acc parallel vector_length(256)

 num_gangs(16)

#pragma acc loop gang vector

 for (int i = 0; i < n; ++i) {

 for (int j = 0; j < m; ++j) {

 // do something

 }

 }

#pragma acc parallel vector_length(256)

#pragma acc loop gang

 for (int i = 0; i < n; ++i) {

#pragma acc loop vector

 for (int j = 0; j < m; ++j) {

 // do something

 }

 }

DIRECTIVES: LOOPS

A loop is shared among different sets of threads, or is executed
sequentially (schedule parameter)

Loop schedules (clauses)

Specify the mapping of loop-level parallelism to OpenACC abstractions

17

#pragma acc loop [clauses]

{

 ...

}

Clause Description
gang Distribute work among thread blocks

worker Distribute work among thread warps of a block
vector Distribute work among threads

seq Execute loops sequentially

DIRECTIVES: DATA

Data region directives are used to decouple data movement from
offload regions

Data clauses describe when data movement is actually necessary

18

#pragma acc data [clauses]

{

 ...

}

Clause Description
copy H2D at region start, D2H at region end

copyin Only H2D at region start
copyout Only D2H at region end
create Allocate data on the device, no data transfer

present Data is already allocated on the device

DIRECTIVES: MISCELLANEOUS
Reduction clause: code generated by compiler

For parallel and loop constructs; doesn’t replace code

Operators: +, *, min, max, …

Update directive

Updates the content of arrays that exist on host and device

Either update the host side or the device side

19

#pragma parallel/kernel loop reduction(op:list)

#pragma acc data copy(x[0:n])...

{

 for(timestep=0;...) {

 ...compute on device...

 #pragma update host (x[0:n])

 MPI_SENDRECV(x, ...)

 #pragma update device (x[0:n])

 ...use on device...

 }

}

DIRECTIVES: MISCELLANEOUS
What‘s missing up to now?

Cache construct

Prioritizes data for placement in the highest cache hierarchy level

GPUs: cache refers to shared memory (scratchpad)

Caches are managed by the compiler with hints by the programmer

Possibly not fully implemented for some compilers

Possibly not working as intended if cache is oversubscribed

20

#pragma acc cache (list)

Example:

for (start = 0; start < max; start += length) {

 #pragma acc cache (array [start:length-1])

 ...

}

OPTIMIZATIONS
Problem: compiler cannot determine if pointers used in different loop iterations
are independent

-> could be pointer aliasing

-> prevents parallelization

If no dependencies are actually present:

Use restrict keyword for variable declaration:  
float* restrict ptr;

Use complier flags (carefully): -anti-alias

Use OpenACC loop clause: independent

Asynchronous Execution: use async clause for update and compute constructs
(update, kernel, parallel)

In-order if async integer parameter is the same

Out-of-order/overlap allowed for different integer parameters

21

#pragma acc kernels loop independent

for(i = 0; i < n; ++i)

 a[i] = b[i] + c[i];

void updatePtrs (size_t *ptrA,  
 size_t *ptrB, size_t *val)

 {

 *ptrA += *val;

 *ptrB += *val;

 }

What if ptrA points to the same
location that val points?

by Mark Harris1

Sandy Bridge CPU vs. Pascal GPU

22

OMP

#threads time

1 69.467537s

2 36.694647s

4 35.993741s

8 38.307806s

ACC

version time total copy comment

1 150.89s 97.04% data copy in between each kernel iteration

2 1.39s 12.73% avoid such data copies: #pragma acc data ...

3 1.06s 8.14% kernel launch configuration optimizations

1 https://devblogs.nvidia.com/openacc-example-part-1/

#pragma acc data copy(A, Anew)

while (err > tol && iter < iter_max) {

 err = 0.f;

 #pragma omp parallel for shared(m, n, Anew, A)

 #pragma acc kernels

 for(int j = 1; j < n-1; j++) {

 for(int i = 1; i < m-1; i++) {

 Anew[j][i]=0.25f*(A[j][i+1] + A[j][i-1]

 + A[j-1][i] + A[j+1][i]);

 err=fmaxf(error,fabsf(Anew[j][i]-A[j][i]));

 }

 }

 #pragma omp parallel for shared(m, n, Anew, A)

 #pragma acc kernels

 for(int j = 0; j < n-1; j++)

 for(int i = 0; i < m-1; i++)

 A[j][i] = Anew[j][i];

 iter++;

}

LAPLACE STENCIL CODE

https://devblogs.nvidia.com/openacc-example-part-1/

WRAPPING UP

OpenACC

SUMMARY
OpenACC: directive-based constructs and tuning capabilities for parallelization
on GPUs

Productive development process, but comprehensive knowledge about the GPU architecture
and execution model still required

Compiler feedback can be cryptic

Performance likely won’t be top-notch

Don’t over-constrain: otherwise performance portability might be limited

Libraries allow to utilize hand-optimized code implementations

Such as cuBLAS (linear algebra), thrust (parallel algorithms and data structures, similar to STL)

Minimal effort, but deep understanding of library operators required

Compilers can’t reason about (non-header-only) library calls

Various other libraries: cuDNN, cuFFT, cuRAND, cuSOLVER, cuSPARSE, nvGRAPH, gunrock,
cuGraph, …

24

ACCELERATION LIBRARIES

CUDA THRUST
Thrust is a C++ template library for CUDA based on the Standard Template
Library (STL)

Performance-portable abstraction layer

High-level parallel algorithm library

Data parallel primitives such as scan, sort, and reduce

Productivity

Containers: host_vector, device_vector

Memory management: data transfers

Algorithm selection: implicit location

Interoperability

CUDA, OpenMP, Intel TBB

E.g.: thrust::omp::vector

26

CUDA THRUST - SORTING EXAMPLE

27

#include <thrust/host_vector.h>

#include <thrust/device_vector.h>

#include <thrust/sort.h>

#include <cstdlib>

int main ()

 {

 // generate 32M random numbers on the host

 thrust::host_vector < int > h_vec (32 << 20);

 thrust::generate (h_vec.begin (), h_vec.end(), rand);

 // transfer data to the device

 thrust::device_vector < int > d_vec = h_vec ;

 // sort data on the device

 thrust::sort (d_vec.begin(), d_vec.end());

 // transfer data back to host

 thrust::copy (d_vec.begin(), d_vec.end(), h_vec.begin());

 return 0;

}

CUDA THRUST - INTEROPERABILITY

28

thrust::omp::vector <float> my_omp_vec (100);

thrust::cuda::vector <float> my_cuda_vec (100);

...

// reduce in parallel on the CPU

thrust::reduce (my_omp_vec.begin(), my_omp_vec.end());

//sort in parallel on the GPU

thrust::sort (my_cuda_vec.begin(), my_cuda_vec.end());

CUBLAS
The CUBLAS library is an implementation of BLAS (Basic Linear
Algebra Subprograms) using CUDA

Levels 1 – 3

Vector-vector, vector-matrix, matrix-matrix

Example: single precision matrix multiply

29

C = ↵ · op(A) · op(B) + � · C
cublasStatus_t cublasSgemm (cublasHandle_t handle,

 cublasOperation_t transa, cublasOperation_t transb,

 int m, int n, int k,

 const float *alpha,

 const float *A, int lda,

 const float *B, int ldb,

 const float *beta,

 float *C, int ldc)

CUBLAS

30

0	

2,000	

4,000	

6,000	

8,000	

10,000	

12,000	

1,024	 4,096	 16,384	

G
FL
O
P/
s	

Square	SGEMM	performance	-	cuBLAS	

Fermi	 Kepler	 Pascal	

0	

200	

400	

600	

800	

1,000	

1,200	

512	 1024	 4096	 8192	

GF
LO

P/
s	

Square	SGEMM	performance	-	own	code	

Fermi	 Kepler	 Pascal	

