GPU COMPUTING
LECTURE 11 - STENCIL COMPUTATIONS

Kazem Shekofteh
kazem.shekofteh@ziti.uni-heidelberg.de
Institute of Computer Engineering
Ruprecht-Karls University of Heidelberg

Inspired from lectures by Holger Froning

STENCIL COMPUTATIONS

Iterative kernel that updates regular arrays based on ‘.-.-_-_-;;;_-_'_'_‘_';‘_‘-‘_'_-_-_-_-_-_-_-...]
a certain pattern - |
Pattern is called stencil (6'|301nt stencil in the example) [* PN

Image processing (blob analysis) (1)

Solving Partial Differential Equations (PDE) (2)
Computational Fluid Dynamics (CFD) for science and Source:wikipedia.org
engineering

For irregular grids see Finite Element Methods (FEM)

http://wikipedia.org

IMAGE PROCESSING - CONNECTED
COMPONENT LABELING

CONNECTED COMPONENT LABELING

Objective: identify connected areas in this

image < >
Motivation: more meaningful patterns or

areas that are easier to process

In the output, each component (segment) is EUEEEE

identified by a different color (value) L | | |
4-way or 8-way connectivity HERENE
EEEENE

EEENEE

CONNECTED COMPONENT LABELING

Threshold: convert color to b/w bitmap
Label: walk sequentially through the pixels

For each pixel, use a stencil to identify neighbour pixels

and their segment label
If valid segments are present, use lowest label
If not, assign a new segment label

Merge: merge labels to reduce them to a minimal set

Output: each pixel labeled to the segment it belongs HEEEEE
to

o ENEEEE
Objectives B

As few segments as possible -> less iterations -> sequential

rocesin T

As parallel as possible -> more iterations but independency

THRESHOLD/INITIAL LABELING

Threshold to b/w image r+g+0b

3

r = (> thres)?1 : 0

For GPU, set initial labels in parallel

Exploits parallelism, but creates more

labels Apply threshold

Later reduction necessary

Set initial labels

1f (x !'= 0) |
1f (tid[N]) return tid[N
1f (tid[W]) return tid[W];
S]) S
E

if (tid return tid[S]; repeat Merge apets
if (tid[E]) return tidl[E]; until no

// more for the 8pt stencil changes Diff label maps
return getNewTid() ;

}
return 0; Output label maps

MERGING/DIFF

Merge labels

1f (ti1id[N] < x) return tid[N];
1f (t1d[W] < x) return tid[W];
1f (tid[S] < x) return tid[S];
1f (tid[E] < x) return tidl[E];
//also NW,NE,SW,SE for the 8pt stencil Apply threshold

return X;

Set initial labels

: repeat Merge labels
Diff labels i <
Either compare to shadow array changes Diff label maps

Or set flag upon changes

Output label maps

NAIVE MERGING row major

Iteration i (already updated),
previous iteration i-1

Marching order is a trade-off between

Row major order: more cache hits (intra-
thread locality)

Column major order: better coalescing
(inter-thread locality, typically more
important)

Marching order observes values from
different iterations (1, i-1)

column major

One thread per pixel
Each thread reads {N,W,S,E}

DIAGONAL MERGING

Using diagonals

Diagonal better as more elements are
already updated

-> less iterations

Still wasteful as elements are read
multiple times and no re-use is
exploited

Similarities to stencil computations

Gauss-Seidel: optimal for sequential
processing (less iterations)

column major

Jacobi: better for parallel processing
(less dependencies)

WAVEFRONT MERGING

Wavefronts

Each thread processes an element new, in cache

Storing previous elements in shared
memory to reduce memory contention

new, out of cache

Here: stencil distance of 1 -> keep
one element in shared memory

For many recent GPUs, this
optimization is already close to
peak

column major

10

WAVEFRONT MERGING FOR LARGER STENCIL

Wavefronts - cache subimages in

shared memory

Loop is divided into three phases
Fill
Steady state

new, out of cache

Drain

Inefficient in the first and last
phase

Similar to pipeline fill/flush

column major

11

APPLICATION EXAMPLE

Tracking of infrared markers

Find center of gravity

FPGA implementation

Real-time constraints ->
optimizations to reduce number
of iterations

(c) 32 labels, 96 blobs (d) 64 labels, 5759 blobs

PhD thesis of Yuning Yang, University of Heidelberg, 2012

12

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS (PDE)

(Partial) differential equations widely used

Partial: function of multiple independent
variables

Engineering, physics, biology, economics,
chemistry

Heat transfer, Newtonian gravity, seismic wave
propagation, electrostatics

Source: wikipedia.org NS aVAP S

Finite-difference methods (FDM)] .
approximate a solution using finite - (2) = f, = lim flz +]i_ f(@)
difference equations o v=0

Taylor’s polynomial fo o~ fla+ k’]i — f(z)

Approximation of the derivative (spacing k) 7 £

Multi-variable functions @f(% t) = fz =]llil% 7

14

http://wikipedia.org

FINITE DIFFERENCES

Forward difference is intuitive

/ @+ k) — fo)
x, fwd ™~ I

Backwards difference is an alternative
flx) — f(zx — k)

fw,bwd ~ I

Both have errors of O(k), likely with different signs though
-> Central difference with O(k?) by averaging both formulas

f ~ fw,fwd‘l_fw,bwd f(CC—Fk)—f(fL‘—k)

2 2k

15

FINITE DIFFERENCES

Multi-variable function f %f(x,t) — £~ fla h’tg — f(z, 1)
d f(ﬂ?,t+k)—f(a?,t)

%f(wvﬂzft% I

Based on the differences k and h, define grid points

. L T
xi:zh;z:O,l,Z,...,E tj:jk;j:o’l’z’”"E v e |0,L];te0,T]

..

l.e., time advances in steps of k, and (1D)
space is discretized at evenly spaced points h K

Also valid for a multi-dimensional space ST T —

16

THE HEAT EQUATION

Describes the heat transfer over time

c is thermal conductivity, or how fast heat is transported through material

d 5 d? | d? | d?
Eu—c-Au:O Au:Vu:@u.dyQu.dZQ
For a single dimension: Ut = C* Uy

If there was a heat or chemical source: u; = ¢ - Uz, + g2, t)

Source: wikipedia.org

Many equations that involve 1 time derivative and 2 spatial
derivatives are parabolic

The methods introduced here will work for most of them

17

http://wikipedia.org

A COMMON APPROXIMATION OF THE 2ND ORDER
PARTIAL DIFFERENCE

Taylor series of f(x) at a number Xo:

f(z) = f(xo) + f(x0)(z — x0) - F{&o) (x — x0)? - f”’g(!xo) (x —x0)° + ... = Z /" (o)

Ar=x—xo: f(xog+ Ax) = f(x9) + [(10)Ax f//;'x())AxQ fmg('xo)AxS

Expand and approximate for both directions:

flx+Ax) =~ f(x) + f(x)Ax fﬁz('m) Az? fx — Ax) =~ f(x) — f'(x)Az f”2(':c) Az?

18

EXPLICIT METHOD

Replace the heat equation with the difference equation Ug = C* Ugy

Forward difference for t, central difference for x

u(z,t+ k) — u(x,t) u(x + h,t) — 2u(x,t) + u(x — h,t)

k
Discretize based on u; ; = u(x;,t;)

Solve this for the next time step j+1

il — Wiy _ Witlj — 2Uij + Ui-1y
k h?
ck
Wij1 = Ti—1,5 + (1= 2r)ui 5 + ripr jir = o5

Explicit methods produce a formula for time step j+1 based on step]

19

LIMITATIONS OF THE EXPLICIT METHOD

Ui = Ti—1,5 + (1 = 2r)us 5 + ruipj5r = -5

Increasing time or spatial resolution

-> Amount of grid points increases -> more computations

Increasing time or spatial resolution introduces numerical errors

-> solution can be unbounded unless time steps are small

Original formula written using a matrix equation (spatial vector)

Suppose Uj is the vector of correct values at time step tj, and E;
is the error of the approximation. Then:

Eigenvalue of Ak < 1 -> error diminishes over time, > 1 -> error increases

It can be shown that the eigenvalue is smaller than 1 for:

hZ is the problem if higher resolutions are required, as k has to be very
small then

-> Otherwise stability problems

ck
72

ck h?
T:ﬁ<0.50rk<2—6

20

FROM EXPLICIT TO IMPLICIT METHOD

Explicit methods compute a single value for each Lo
data point at t=t+k : : 2c

Require impractically small time steps to keep the error in
the result bounded

Implicit methods instead compute all points at t=t+k
by solving a system of equations
Each data point at time t provides an equation for time t+k

Assume m space points, there are m-2 equations and m-2
unknown values; therefore it can be solved with standard
methods

-> Much more computationally intensive

But also much more numerically stable

Computationally intensive -> GPUs

21

IMPLICIT METHOD

¢k .
Ui j+1 = TU;—1,5 T (1 — QT)UZ'J' T TU1 55T = ﬁ xplicit

If we approximate uxx and u: rather at tj.1 instead of tj, and using a
backwards difference for ut, we obtain:

ck o
Ui 5 = —TU;—1,5+1 -+ (1 —+ 2r)ui,j+1 — TUj41,5415T = ﬁ Impl1c1t

This stencil defines three output points for one input point
Thus, for each output point we need 3 equations
Relationship is linear
Solving a linear equation system

Matrix multiply important here

22

IMPLICIT METHOD

ck
Ui j = —TU;—1,454+1 T (1 + 27’)“i,j—|—1 — TUi4+1,54+1, T = ﬁ
Solving the linear equation system
Boundary condition b u; =B -uji1 —71-bjyy

B-ujpr =uj +71-bjg

1+ 2r —7r
—7r 1+2r —r

—r 1+ 2r —7r
—7r 1+ 27’_

Eigenvalue of B always lower than 1 -> no stability problems

Not shown here

THE HEAT EQUATION - ERRORS

Both explicit and implicit method make errors
O(h2) error in approximating uxx, O(k) error in approximating ut
O(h2+k) total

Stability of implicit method allows arbitrarily large k, but to maintain accuracy we
need K ~ hZ

Crank-Nicholson Method

Combines both methods by weighted averages of uxx at j and j+1

(B-1)c

Wiyl — Uij Pc
= 25 Wit 1541 = 2Ui 1 T Uimr 1) + 5 (Ui — 2Ui5 + Uim15)

k K2
k ~ h now possible, and optimal choice leads to O(h¢) error

For an accuracy of 4 digits, 1M points for the implicit method, while only
about 560 points for CNM

24

APPLICATION EXAMPLE: POISSON’S EQUATION

Poisson’s equation is a PDE of elliptic
type, widely used in mechanical A-d=f
engineering and theoretical physics

To describe the potential field caused by a ©

given Charge Oor mass density distribution E. Phillips, M. Fatica, Implementing the Himeno benchmark
with CUDA on GPU clusters, in 2010 IEEE International

With the potential field known, one can Symposium on Parallel Distributed Processing (IPDPS)
)

then calculate the associated gravitational
or electrostatic field

Cluster Comparison

2142.7

2000

Newtonian gravity, electrostatics, ...

W 451070 (16 GPU @ 1.44 GHz)
B Fujitsu (1024 Xeon 3.06 GHz)

1500

GFLOPS

The Himeno benchmark focusses on
the solution using a 19-point stencil

CRAY XD1 (512 Opteron 2.4GHz)
B CRAY XT3 (1920 Opteron 2.4 GHz)

802.9

514.5

25

LIMITS

Many equations solvable as PDE, unless
High dimensionality

Highly nonlinear structures

We often find n-Body methods for such cases

”... gravitational Vlasov-Poisson equation, a six-dimensional PDE for the Liouville
flow of the phase space probability distribution function, with gravitational
potential arises self-consistently from the Poisson equation.”

Salman Habib, et al. 2013. HACC: extreme scaling and performance across
diverse architectures. International Conference on High Performance Computing,

Networking, Storage and Analysis (SC "13). DOI: https://doi.org/
10.1145/2503210.2504566

26

https://doi.org/10.1145/2503210.2504566
https://doi.org/10.1145/2503210.2504566

PERFORMANCE OPTIMIZATIONS

PARALLELIZATION OF STENCIL CODES

Wi i1 = TUi—1,; + (1 — 2r)u; j + rujpq 57 =
Stencil codes are memory-bound

Computational intensity
E.g. explicit method: 5 flops, 3 elements each 4B -> 5/12

Two main questions

How to partition the data among the threads

Obviously domain decomposition
2D/ 3D thread blocks?

How to leverage shared memory as a scarce resource in the optimal way?

These two questions are closely related

ck

h2

28

PARALLELIZATION OF STENCIL CODES

Partitioning of a 2D data structure

Overlap area is called halo : | ; :
2D partitioning

Vertical halos are poorly alighed in memory ’ | : ¥
1D partitioning

Only horizontal 1
Surface-to-volume effects
Communication cost depending on data 2

layout?

Shared memory: likely no

Distributed memory: yes

29

PARALLELIZATION OF STENCIL CODES

Shared memory use

Minimal usage -> multiple thread blocks per SM

Marching planes

Only keep 3 planes in shared memory i1

Cycling buffer as we march along a direction

k-1
Then: Z-direction of the data block virtually
unlimited
Further optimizations: texture memory
Reduced instruction overhead Marching through a 3-dimensional

data array

30

WRAPPING UP

SUMMARY

Stencil codes as prime example for local
communication

Nearest-neighbor references only (local
communication depending on stencil size)

Naive/slightly optimized implementations easy

Explicit and implicit methods

Compute complexity vs. nhumerical stability

Highly regular computation, little amount of
data reuse

Memory-bound and little data reuse => mind the
memory access performance

32

http://wikipedia.org

APPENDIX: TEMPORAL BLOCKING

TEMPORAL BLOCKING (TB)

Improve locality by temporal blocking

For a subdomain, perform multiple updates (bt)
at once, then proceed to next subdomain

bt: temporal block size

Skewed block shape is required due to
dependencies

Simple rectangular block violates dependencies

X

wavefront trapezoid diamond

34

TEMPORAL BLOCKING USING TRAPEZOID SHAPE

// Temporal blocking using trapezoid shape

for (tl = ce1ld (-N-29, 32); | , ,
£1 <= floord (T-2, 32) // Simple stencil in 1D
£1 4+) for (£t = 0, t < T; t++)
for ((x = 1; x < N-1; x++)
for (t2 = max (tl, -tl-1); Alt+l]ix] = CAlt]{x-1] +
£2 <= min3 (floord (-16*t1+T-1, 16), Alt]lx] +
floord (16*t14N+13,16), ALt izl
floord (T+N-3, 32)); i
t2 ++)
for (t3 = max4 (0, lo*tl+lo*t2, 32*tl+l, 32*t2-N+2);
t3 <= mind (T-1, 32*t2+30, lo*tl+lo*t2+31, 32*tl+N+29);
t3 +4)
lbv = max3 (32*t2, t3+1, -=-32*tl+2*t3-31);
ubv = min3 (—-32*tl+2*t3, 32*t2+31, t3+N-2);
for (t4d = 1lbv,;, t4d <= ubv; t4d ++)
Alt3+1] [(-t3+t4d)] = (A[t3] [(-t3+t4)-1] +
Alt3] [(-t3+t4d)] +
ATt3] [(-t3+t4d)+1])
/ 35

35

