GPU COMPUTING LECTURE 11 - STENCIL COMPUTATIONS

Kazem Shekofteh kazem.shekofteh@ziti.uni-heidelberg.de Institute of Computer Engineering Ruprecht-Karls University of Heidelberg Inspired from lectures by Holger Fröning

STENCIL COMPUTATIONS

Iterative kernel that updates regular arrays based on a certain pattern

Pattern is called stencil (6-point stencil in the example)

Applications

Image processing (blob analysis) (1)

Solving Partial Differential Equations (PDE) (2)

Computational Fluid Dynamics (CFD) for science and engineering

For irregular grids see Finite Element Methods (FEM)

Source: wikipedia.org

IMAGE PROCESSING - CONNECTED COMPONENT LABELING

CONNECTED COMPONENT LABELING

Objective: identify connected areas in this image

Motivation: more meaningful patterns or areas that are easier to process

In the output, each component (segment) is identified by a different color (value)

4-way or 8-way connectivity

CONNECTED COMPONENT LABELING

Threshold: convert color to b/w bitmap

Label: walk sequentially through the pixels

For each pixel, use a stencil to identify neighbour pixels and their segment label

If valid segments are present, use lowest label

If not, assign a new segment label

Merge: merge labels to reduce them to a minimal set

Output: each pixel labeled to the segment it belongs to

Objectives

As few segments as possible -> less iterations -> <u>sequential</u> processing

As <u>parallel</u> as possible -> more iterations but independency

THRESHOLD/INITIAL LABELING

Threshold to b/w image

$$x = (\frac{r+g+b}{3} > thres)?1:0$$

For GPU, set initial labels in parallel

Exploits parallelism, but creates more labels

Later reduction necessary

```
if ( x != 0 ) {
  if ( tid[N] ) return tid[N];
  if ( tid[W] ) return tid[W];
  if ( tid[S] ) return tid[S];
  if ( tid[E] ) return tid[E];
  // more for the 8pt stencil
  return getNewTid();
}
return 0;
```


MERGING/DIFF

Merge labels

```
if ( tid[N] < x ) return tid[N];
if ( tid[W] < x ) return tid[W];
if ( tid[S] < x ) return tid[S];
if ( tid[E] < x ) return tid[E];
//also NW,NE,SW,SE for the 8pt stencil
return x;</pre>
```

Diff labels

Either compare to shadow array
Or set flag upon changes

NAIVE MERGING

Iteration i (already updated), previous iteration i-1

Marching order is a trade-off between

Row major order: more cache hits (intrathread locality)

Column major order: better coalescing (inter-thread locality, typically more important)

Marching order observes values from different iterations (i, i-1)

One thread per pixel

Each thread reads {N,W,S,E}

row major

column major

DIAGONAL MERGING

Using diagonals

Diagonal better as more elements are already updated

-> less iterations

Still wasteful as elements are read multiple times and no re-use is exploited

Similarities to stencil computations

Gauss-Seidel: optimal for sequential processing (less iterations)

Jacobi: better for parallel processing (less dependencies)

i	i	i	i	i
i	i	i	i	i-1
i	i	i	i-1	i-1
i	i		→ 1	i-1
i	i-1	i-1	i-1	i-1

WAVEFRONT MERGING

Wavefronts

Each thread processes an element

Storing previous elements in shared memory to reduce memory contention

Here: stencil distance of 1 -> keep one element in shared memory

For many recent GPUs, this optimization is already close to peak

front

new, in cache

new, out of cache

column major

WAVEFRONT MERGING FOR LARGER STENCIL

Wavefronts - cache subimages in shared memory

Loop is divided into three phases

Fill

Steady state

Drain

Inefficient in the first and last phase

Similar to pipeline fill/flush

new, in cache
new, out of cache

APPLICATION EXAMPLE

Tracking of infrared markers

Find center of gravity

FPGA implementation

Real-time constraints -> optimizations to reduce number of iterations

(a) 8 labels, 16 blobs

(b) 16 labels, 47 blobs

(c) 32 labels, 96 blobs

(d) 64 labels, 5759 blobs

PARTIAL DIFFERENTIAL EQUATIONS

PARTIAL DIFFERENTIAL EQUATIONS (PDE)

(Partial) differential equations widely used

Partial: function of multiple independent variables

Engineering, physics, biology, economics, chemistry

Heat transfer, Newtonian gravity, seismic wave propagation, electrostatics

Finite-difference methods (FDM) approximate a solution using finite difference equations

Taylor's polynomial

Approximation of the derivative (spacing k)

Multi-variable functions

$$\frac{d}{dx}f(x) = f_x = \lim_{k \to 0} \frac{f(x+k) - f(x)}{k}$$

$$f_x \approx \frac{f(x+k) - f(x)}{k}$$

$$\frac{d}{dx}f(x,t) = f_x = \lim_{k \to 0} \frac{f(x+k,t) - f(x,t)}{k}$$

FINITE DIFFERENCES

Forward difference is intuitive

$$f_{x,fwd} \approx \frac{f(x+k) - f(x)}{k}$$

Backwards difference is an alternative

$$f_{x,bwd} \approx \frac{f(x) - f(x - k)}{k}$$

Both have errors of O(k), likely with different signs though

-> Central difference with O(k²) by averaging both formulas

$$f_x \approx \frac{f_{x,fwd} + f_{x,bwd}}{2} = \frac{f(x+k) - f(x-k)}{2k}$$

FINITE DIFFERENCES

Multi-variable function f

$$\frac{d}{dx}f(x,t) = f_x \approx \frac{f(x+h,t) - f(x,t)}{h}$$

$$\frac{d}{dt}f(x,t) = f_t \approx \frac{f(x,t+k) - f(x,t)}{k}$$

Based on the differences k and h, define grid points
$$x_i=ih; i=0,1,2,\ldots, rac{L}{h} \quad t_j=jk; j=0,1,2,\ldots, rac{T}{k} \quad x\in [0,L]; t\in [0,T]$$

I.e., time advances in steps of k, and (1D) space is discretized at evenly spaced points h

Also valid for a multi-dimensional space

THE HEAT EQUATION

Describes the heat transfer over time

c is thermal conductivity, or how fast heat is transported through material

$$\frac{d}{dt}u - c \cdot \Delta u = 0 \qquad \Delta u = \nabla^2 u = \frac{d^2}{dx^2}u + \frac{d^2}{dy^2}u + \frac{d^2}{dz^2}u$$

For a single dimension:

$$u_t = c \cdot u_{xx}$$

If there was a heat or chemical source: $u_t = c \cdot u_{xx} + g(x,t)$

Source: wikipedia.org

Many equations that involve 1 time derivative and 2 spatial derivatives are parabolic

The methods introduced here will work for most of them

A COMMON APPROXIMATION OF THE 2ND ORDER PARTIAL DIFFERENCE

Taylor series of f(x) at a number x_0 :

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \frac{f'''(x_0)}{3!}(x - x_0)^3 + \dots = \sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!}(x - x_0)^n$$

$$\Delta x = x - x_0 : f(x_0 + \Delta x) = f(x_0) + f'(x_0)\Delta x + \frac{f''(x_0)}{2!}\Delta x^2 + \frac{f'''(x_0)}{3!}\Delta x^3 + \dots$$

Expand and approximate for both directions:

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2$$

$$f(x - \Delta x) \approx f(x) - f'(x)\Delta x + \frac{f''(x)}{2!}\Delta x^2$$

$$f'(x)\Delta x \approx f(x) + \frac{f''(x)}{2!}\Delta x^2 - f(x - \Delta x)$$

$$f(x + \Delta x) \approx f(x) + f(x) + \frac{f''(x)}{2!} \Delta x^2 - f(x - \Delta x) + \frac{f''(x)}{2!} \Delta x^2$$
$$f''(x) \approx \frac{f(x + \Delta x) - 2f(x) + f(x - \Delta x)}{\Delta x^2}$$

EXPLICIT METHOD

Replace the heat equation with the difference equation

$$u_t = c \cdot u_{xx}$$

Forward difference for t, central difference for x

$$u_t = \frac{u(x, t+k) - u(x, t)}{k}; u_{xx} = \frac{u(x+h, t) - 2u(x, t) + u(x-h, t)}{h^2}$$

Discretize based on $u_{i,j} = u(x_i, t_j)$

Solve this for the next time step j+1

$$\frac{u_{i,j+1} - u_{i,j}}{k} = c \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}$$

$$u_{i,j+1} = ru_{i-1,j} + (1 - 2r)u_{i,j} + ru_{i+1,j}; r = \frac{ck}{h^2}$$

Explicit methods produce a formula for time step j+1 based on step j

LIMITATIONS OF THE EXPLICIT METHOD

$$u_{i,j+1} = ru_{i-1,j} + (1-2r)u_{i,j} + ru_{i+1,j}; r = \frac{ck}{h^2}$$

Increasing time or spatial resolution

-> Amount of grid points increases -> more computations

Increasing time or spatial resolution introduces numerical errors

-> solution can be unbounded unless time steps are small

Original formula written using a matrix equation (spatial vector)

Suppose U_j is the vector of correct values at time step t_j , and E_j is the error of the approximation. Then:

Eigenvalue of $A^k < 1 \rightarrow$ error diminishes over time, > 1 -> error increases

It can be shown that the eigenvalue is smaller than 1 for:

h² is the problem if higher resolutions are required, as k has to be very small then

-> Otherwise stability problems

$$u_{j+1} = Au_{j}$$

$$u_{j+1} = AU_{j} + AE_{j}$$

$$u_{j+k} = A^{k}U_{j} + A^{k}E_{j}$$

$$r = \frac{ck}{h^{2}} < 0.5 \text{ or } k < \frac{h^{2}}{2c}$$

FROM EXPLICIT TO IMPLICIT METHOD

Explicit methods compute a single value for each data point at t=t+k

Require impractically small time steps to keep the error in the result bounded

Implicit methods instead compute all points at t=t+k by solving a system of equations

Each data point at time t provides an equation for time t+k

Assume m space points, there are m-2 equations and m-2 unknown values; therefore it can be solved with standard methods

-> Much more computationally intensive

But also much more numerically stable

Computationally intensive -> GPUs

IMPLICIT METHOD

$$u_{i,j+1} = ru_{i-1,j} + (1-2r)u_{i,j} + ru_{i+1,j}; r = \frac{ck}{h^2}$$

Explicit

If we approximate u_{xx} and u_t rather at t_{j+1} instead of t_j , and using a backwards difference for ut, we obtain:

$$u_{i,j} = -ru_{i-1,j+1} + (1+2r)u_{i,j+1} - ru_{i+1,j+1}; r = \frac{ck}{h^2}$$
 | Implicit

This stencil defines three output points for one input point

Thus, for each output point we need 3 equations

Relationship is linear

Solving a linear equation system

Matrix multiply important here

IMPLICIT METHOD

$$u_{i,j} = -ru_{i-1,j+1} + (1+2r)u_{i,j+1} - ru_{i+1,j+1}; r = \frac{ck}{h^2}$$

Solving the linear equation system

Boundary condition b

$$u_j = B \cdot u_{j+1} - r \cdot b_{j+1}$$

$$B \cdot u_{j+1} = u_j + r \cdot b_{j+1}$$

$$B = \begin{bmatrix} 1 + 2r & -r & & & \\ -r & 1 + 2r & -r & & & \\ & \ddots & \ddots & \ddots & & \\ & & -r & 1 + 2r & -r \\ & & & -r & 1 + 2r \end{bmatrix}$$

Eigenvalue of B always lower than 1 -> no stability problems

Not shown here

THE HEAT EQUATION - ERRORS

Both explicit and implicit method make errors

 $O(h^2)$ error in approximating u_{xx} , O(k) error in approximating u_t

O(h²+k) total

Stability of implicit method allows arbitrarily large k, but to maintain accuracy we need $k \sim h^2$

Crank-Nicholson Method

Combines both methods by weighted averages of uxx at j and j+1

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{\beta c}{h^2} (u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}) + \frac{(\beta - 1)c}{h^2} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j})$$

k ~ h now possible, and optimal choice leads to O(h6) error

For an accuracy of 4 digits, 1M points for the implicit method, while only about 560 points for CNM

APPLICATION EXAMPLE: POISSON'S EQUATION

Poisson's equation is a PDE of elliptic type, widely used in mechanical engineering and theoretical physics

$$\Delta \cdot \Phi = f$$

To describe the potential field caused by a given charge or mass density distribution

With the potential field known, one can then calculate the associated gravitational or electrostatic field

Newtonian gravity, electrostatics, ...

The Himeno benchmark focusses on the solution using a 19-point stencil

E. Phillips, M. Fatica, Implementing the Himeno benchmark with CUDA on GPU clusters, in 2010 IEEE International Symposium on Parallel Distributed Processing (IPDPS)

LIMITS

Many equations solvable as PDE, unless

High dimensionality

Highly nonlinear structures

We often find n-Body methods for such cases

"... gravitational Vlasov-Poisson equation, a six-dimensional PDE for the Liouville flow of the phase space probability distribution function, with gravitational potential arises self-consistently from the Poisson equation."

Salman Habib, et al. 2013. HACC: extreme scaling and performance across diverse architectures. International Conference on High Performance Computing, Networking, Storage and Analysis (SC '13). DOI: https://doi.org/
10.1145/2503210.2504566

PERFORMANCE OPTIMIZATIONS

PARALLELIZATION OF STENCIL CODES

$$u_{i,j+1} = ru_{i-1,j} + (1-2r)u_{i,j} + ru_{i+1,j}; r = \frac{ck}{h^2}$$

Stencil codes are memory-bound

Computational intensity

E.g. explicit method: 5 flops, 3 elements each 4B -> 5/12

Two main questions

How to partition the data among the threads

Obviously domain decomposition

2D/3D thread blocks?

How to leverage shared memory as a scarce resource in the optimal way?

These two questions are closely related

PARALLELIZATION OF STENCIL CODES

Partitioning of a 2D data structure

Overlap area is called halo

2D partitioning

Vertical halos are poorly aligned in memory

1D partitioning

Only horizontal

Surface-to-volume effects

Communication cost depending on data layout?

Shared memory: likely no

Distributed memory: yes

PARALLELIZATION OF STENCIL CODES

Shared memory use

Minimal usage -> multiple thread blocks per SM

Marching planes

Only keep 3 planes in shared memory

Cycling buffer as we march along a direction

Then: Z-direction of the data block virtually unlimited

Further optimizations: texture memory

Reduced instruction overhead

WRAPPING UP

SUMMARY

Stencil codes as prime example for local communication

Nearest-neighbor references only (local communication depending on stencil size)

Naive/slightly optimized implementations easy

Explicit and implicit methods

Compute complexity vs. numerical stability

Highly regular computation, little amount of data reuse

Memory-bound and little data reuse => mind the memory access performance

APPENDIX: TEMPORAL BLOCKING

TEMPORAL BLOCKING (TB)

Improve locality by temporal blocking

For a subdomain, perform multiple updates (bt) at once, then proceed to next subdomain

bt: temporal block size

Skewed block shape is required due to dependencies

Simple rectangular block violates dependencies

diamond

TEMPORAL BLOCKING USING TRAPEZOID SHAPE

```
// Temporal blocking using trapezoid shape
for ( t1 = ceild (-N-29, 32);
                                                       // Simple stencil in 1D
      t1 \le floord (T-2, 32);
                                                       for (t = 0; t < T; t++)
      t1 ++ )
                                                           for (x = 1; x < N-1; x++)
                                                              A[t+1][x] = (A[t][x-1] +
   for (t2 = max (t1, -t1-1);
                                                                            A[t][x] +
         t2 \le min3 \ (floord \ (-16*t1+T-1, 16),
                                                                            A[t][x+1]
                       floord ( 16*t1+N+13,16 ),
                                                                            * C;
                       floord (T+N-3, 32);
          t2 ++ )
      for ( t3 = max4 ( 0, 16*t1+16*t2, 32*t1+1, 32*t2-N+2 );
             t3 \le min4 \ (T-1, 32*t2+30, 16*t1+16*t2+31, 32*t1+N+29);
             t3 ++)
          1bv = max3 ( 32*t2, t3+1, -32*t1+2*t3-31 );
          ubv = min3 ( -32*t1+2*t3, 32*t2+31, t3+N-2 );
          for ( t4 = lbv; t4 \le ubv; t4 ++)
             A[t3+1][(-t3+t4)] = (A[t3][(-t3+t4)-1] +
                                   A[t3][(-t3+t4)] +
                                   A[t3][(-t3+t4)+1]
                                 / 3;
```