
Computer Systems
Introduction

Jakub Yaghob

Literature and slides
 Web page and slides

 https://www.ksi.mff.cuni.cz/teaching/nswi170-web/
 Books

 Silberschatz A.: Operating Systems Concepts,
Willey

 Hennessy J.L.: Computer Architecture: A
Quantitative Approach, Morgan Kaufmann

https://www.ksi.mff.cuni.cz/teaching/nswi170-web/
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/

Course
 Lectures

 Weekly
 Exam

 Short written test
 Programming task for Arduino

 Labs
 Playing with Arduino with an added shield
 Biweekly, assignments, home assignment
 Upload your assignment to the SIS module Study Group

Roster
 Borrow your Arduino in the library!

Course content
 Content

 C language
 CPU

 Architecture
 Instruction set
 Interrupt, DMA

 Memory
 Addressing, alignment
 Memory hierarchy, cache

 Programming languages
 Compilation, linking, memory organization
 Function calls, parameter passing
 Heap, runtime, JIT

 Operating systems
 Architecture, process, thread, scheduling
 Virtual memory

 Parallel programming
 Synchronization

Computer Systems
C/C++ language

Jakub Yaghob

Features
 Procedural programming language
 Structured, imperative programming
 Recursion
 Static type system
 C constructs map efficiently to machine instructions

 Operating systems
 HPC
 Embedded systems

 Case sensitive, ignore all whitespaces

History

B
(Bell Labs. 1969)

BCPL
(Cambridge 1966) C with classes

(Stroustrup 1979)

The C++ programming language
(Stroustrup 1985)

C++98
(ISO/IEC 14882 1998)

C++03
(ISO/IEC 14882 2003)

C++TR1
(ISO/IEC 19768 2007)

C++11
(ISO/IEC 14882 2011)

C
(Bell Labs. 1971)

K&R C
(Kernigan & Ritchie 1978)

C++14
(2014)

Objective-C
(Cox & Love 1981)

Object-Oriented Programing
(Cox 1986)

Objective-C 2.0
(Apple 2006)

Objective-C++
(Apple 2010)

ANSI C
(ANSI X3J11 1989)

C11
(ISO/IEC 9899 2011)

C99
(ISO/IEC 9899 1999)

almost supersetinspired

superset significant change

C#
(Microsoft 2002)

Java
(Sun 1995)

C++/CLI
(Microsoft 2005) C++17

(2017)

C++20
(2020)

C18
(2018)

Example
/* this is my best program */
#include <stdio.h>

int x; // global variable

int f(int p) { // function
 int q = p+x;// local variable
 return q;
}

Constants
 Integer numbers

 Decimal number
123, -18

 Hexadecimal number
0x7a

 Floating point number
-1.234e-5

 String
"foo bar"

 Char
'a'

 Escape sequence
 \n – LF
 \r – CR
 \t – TAB
 \\ – \
 \' – ’
 \" – ”
 \xab – char 0xab

Basic types
 Integer types

 Base
char, int

 Modifiers
short, long
signed, unsigned

 Auxiliary
size_t

 Floating point types
float, double

 Other types
void, bool

 Implicit conversion
 Conversion rank

Statements
 Compound statement (block)
{ }

 Expression statement
expr ;

 If statement
if (expr) stmt
if (expr) stmt else stmt

 Return from a function
return expr;

Statements – switch
switch (expr) {
case 0:

// something
break;

case 1:
// something else
break;

case 2:
case 3:

// common code for 2 and 3
break;

default:
// do something else otherwise
break;

}

Statements – loops
 While
while (expr) stmt

 Do-while
do stmt while (expr);

 For
for(expri ; exprt ; exprs) stmt

 Jumps
break;
continue;

Expression
 Arithmetic
+, -, *, /, %
 No //
++, --

 Comparison
<, <=, >, >=, ==, !=

 Bitwise
~, &, |, ^, <<, >>

 Logical
&&, ||, !

 Pointers
&, *

 Assignment
=, +=, -=, *=, /=, %=, &=,
|=, ^=

 Variable/type size
sizeof

 Ternary expr
test ? e1 : e2

Variables
 A named value stored in a memory
 Must be declared before initialization and using
 Variable scope
 Storage class

int i, j;
int c = 42;
static int s = 0;

Array
 Collection of elements each identified by at least one index
 Contiguous area of memory
 Constant size
 Correct alignment
 Row-major order
 Zero based index

int u[4];
int p[] = { 1, 2, 3 };
int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };

1

0, 0

2

0, 1

3

0, 2

4

1, 0

5

1, 1

6

1, 2

Structure
 Collection of fields (members)
 Inner alignment (padding)
 Outer alignment (padding)

struct point2d { int x, y; }
struct data {

char c;
double d;
int i;

};

c0

d8

i12

Remnants
 Constants
#define C 13
constexpr int C = 13;

 Enumerated type
enum e { RED, BLUE, GREEN };

 Automatic type
 Type inferred from an initialization expression
auto a = 3;

 Importing a module
#include <system.h>

Starting point
 Always function main

 Return value is an exit code
 Without return 0 exit code assumed

 Basic version
int main() { }

 Advanced version
int main(int argc, char **argv) { }

Pointer
 Each variable somewhere in memory
 Address
 A variable holding an address = pointer

int v = 8;
int *pv = &v;
*pv = 4;

8 v1234

1234 pv6666

Functions, parameter passing
– C
 Parameters in C always passed by value
 Output parameters use pointer

void pvec(point2d in, point2d *out)
{

out->x = in.y;
out->y = in.x;

}

Reference
 Fixed pointer

 Address not reassignable

int v = 8;
int &rv = v;
rv = 4;

8 v1234

1234 rv6666

Functions, parameter passing
– C++
 Parameters in C++ passed by value or by

reference
 Output parameters by reference

void pvec(point2d in, point2d &out)
{
out.x = in.y;
out.y = in.x;

}

Computer Systems
CPU

Jakub Yaghob

Von Neumann architecture
 Simple, slower

CPU Memory

I/O

Harvard architecture
 Microcontrollers
 Multiple address spaces

CPUInstruction
Memory

Data
Memory

I/O

Real PC architecture
 Sandy Bridge

mouse
LAN

Lan
Adap

South Bridge (PCH)Audio
Codec

DVD
Drive

Hard
DiskPa

ra
lle

l P
or

t

Se
ria

l P
or

t

Floppy
Drive

PS/2
keybrd/
mouse

CacheDDRIII
Channel 1 Mem

BUSDDRIII
Channel 2

Memory
controller Core

Core

D-sub, HDMI, DVI, Display port

External
Graphics

Card
PCI express ×16

GFX

Display link

2133-1066
MHz

Line in
Line out

S/PDIF in
S/PDIF out

Super I/O
LPC

USB SATA SATA

BIOS PCI express ×1

exp
slots

System
Agent

4×DMI

CPU
 Architecture

 HW
 ISA

 "Simple" machine
 Executes instructions

 Instruction – simple command

Instructions - motivation
 How can we execute the following code?

if(a<3) b = 4; else c = a << 2;

for(int i=0;i<5;++i) a[i] = i;

int f(int p) { return p+1; }
void g() { auto r = f(42); }

Instruction classes
 Load instructions
 Store instructions
 Move instruction
 Arithmetic and logic instructions
 Jumps

 Unconditional x conditional
 Direct x indirect x relative

 Call, return
 …

Registers
 Types

 General, integer, floating point, address, branch,
flags, predicate, application, system, vector, …

 Naming
 Direct x stack

 Aliasing

Registers – example 32-bit x86
EAX AX AH AL CS

EBX BX BH BL DS

ECX CX CH CL ES

EDX DX DH DL SS

ESI SI FS

EDI DI GS

EBP BP EFLAGS FLAGS

ESP SP EIP IP

Registers – example IA-64

MIPS – simple assembler
 Execution environment

 32-bit registers r0-r31
 r0 is always 0, writes are ignored
 r31 is a link register for the jal instruction

 No stack
 No flags
 PC register

MIPS – register aliases
Register Name Purpose Preserve
$r0 $zero 0 N/A

$r1 $at Assembler temporary No

$r2-$r3 $v0-$v1 Return value No

$r4-$r7 $a0-$a3 Function arguments No

$r8-$r15 $t0-$t7 Temporaries No

$r16-$r23 $s0-$s7 Saved temporaries Yes

$r24-$r25 $t8-$t9 Temporaries No

$r26-$r27 $k0-$k1 Kernel registers – DO NOT USE N/A

$r28 $gp Global pointer Yes

$r29 $sp Stack pointer Yes

$r30 $fp Frame pointer Yes

$r31 $ra Return address Yes

MIPS – instructions
 Arithmetic

 add $rd,$rs,$rt
 R[rd] = R[rs]+R[rt]

 addi $rd,$rs,imm16
 R[rd] = R[rs]+signext(imm16)

 sub $rd,$rs,$rt
 subi $rd,$rs,imm16

ISA comparison
MIPS
ADD $t1,$t1,$t0
ADDI $t1,$t1,1

ADD $t2,$t0,$t1

x86
ADD eax,ebx
ADD eax,1

MOV eax,ebx
ADD eax,ecx

MIPS – instructions
 Logic operations

 and/or/xor/nor $rd,$rs,$rt
 andi/ori/xori $rd,$rs,imm16

 R[rd] = R[rs] and/or/xor zeroext(imm16)
 No not instruction, use nor $rd,$rs,$rs

 Shifts
 sll/slr $rd,$rs,shamt

 R[rd] = R[rs] << / >> shamt
 sra $rd,$rs,shamt

ISA comparison
MIPS
NOR $t1,$t2

SLL $t1,$t1,3

x86
MOV eax,ebx
NOT eax

SHL eax,3

MIPS – instructions
 Memory access

 lw $rd,imm16($rs)
 R[rd] = M[R[rs] + signext32(imm16)]

 sw $rt,imm16($rs)
 M[R[rs] + signext32(imm16)] = R[rt]

 lb $rd,imm16($rs)
 R[rd] = signext32(M[R[rs] + signext32(imm16)])

 lbu $rd,imm16($rs)
 R[rd] = zeroext32(M[R[rs] + signext32(imm16)])

 sb $rt,imm16($rs)
 M[R[rs] + signext32(imm16)] = R[rt]

 Moves
 li $rd,imm32

 R[rd] = imm32
 move $rd,$rs

 R[rd] = R[rs]

ISA comparison
MIPS
LW $t1,1234($t0)
SW $t1,1234($t0)
LB $t1,1234($t0)
LI $t1,5678
MOVE $t1,$t0

x86
MOV eax,[ebx+1234]
MOV [ebx+1234],eax
MOV al,[ebx+1234]
MOV eax,5678
MOV eax,ebx

MIPS – instructions
 Jumps

 j addr
 PC = addr

 jr $rs
 PC = R[rs]

 jal addr
 R[31] = PC+4; PC = addr

ISA comparison
MIPS
J label
JR $ra

JAL fnc

x86
JMP label1
JMP [ebx]

CALL fnc

MIPS – instructions
 Conditional jumps

 beq $rs,$rt,addr
 If R[rs]=R[rt] then PC=addr else PC=PC+4

 bne $rs,$rt,addr
 Testing

 slt $rd,$rs,$rt
 If R[rs]<R[rt] then R[rd] = 1 else R[rd] = 0

 sltu $rd,$rs,$rt
 Unsigned version

 slti $rd,$rs,imm16
 If R[rs]<signext(imm16) then R[rd] = 1 else R[rd] = 0

 sltiu $rd,$rs,imm16
 If R[rs]<zeroext(imm16) then R[rd] = 1 else R[rd] = 0

ISA comparison
MIPS
BEQ $t0,$t1,label

SLT $t2,$t1,$t0
BNE $t2,$zero,label

SLTI $t2,$t1,5
BNE $t2,$zero,label

x86
CMP eax,ebx
JZ label

CMP eax,ebx
JL label

CMP eax,5
JL label

Flags
 Only used by some ISA
 Control execution
 Check status of the last instruction
 Usual flags

 Z – zero flag
 S – sign flag
 C – carry flag

CPU
 Architecture

 Memory controller
 Cache hierarchy
 Core
 Registers

 Types
 Logical processor

 Hyper threading
 Instructions

Instruction
 Simple command to the CPU
 Encoding
 Assembler
 Operands
 Instruction flow

 PC
 Stack?

 SP

ISA
 Instruction set architecture

 Abstract model of CPU
 Classification

 CISC – Complex Instruction Set Computer
 RISC – Reduced Instruction Set Computer
 VLIW – Very Long Instruction Word
 EPIC – Explicitly Parallel Instruction Computer

 Orthogonality
 Accumulator

 Load-Execute-Store

CPU – simplified scheme

CORE 0

T0 T4

EU

L1I
L1D

L2

CORE 1

T1 T5

EU

L1I
L1D

L2

CORE 2

T2 T6

EU

L1I
L1D

L2

CORE 3

T3 T7

EU

L1I
L1D

L2

L3/LLC

Package

Real CPU scheme – package
 Intel Coffee Lake

Real CPU
scheme – core

CPU architecture – pipeline
 Current CPU

 14-19 stages

CPU architecture – superscalar
processor
 Current CPU

 5-way, asymmetric

CPU architecture – out-of-
order execution

Decoder

Reservation station (pool)

µOPs

I/V ALU

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

I/V ALU AGUAGUAGUI ALUI/V ALU AGU

Load LoadI Logic

Branch
I/F DIV

SQRT

AES

F FMA

String

I/V Logic
I/V MUL

F FMA

Bit scan

I/V Logic

I/V MUL

Comp Int
F ADD

Vec Shuff Store

Branch

Reorder buffer

Computer Systems
Memory

Jakub Yaghob

Memory
 Definition

 Each memory organized into memory cells – bits
 Bits are grouped into words of fixed length

 1, 2, 4, 8, 16, 32, 64, and 128 bits
 Each word can be accessed by a binary address

 N bits
 We can store 2N words in the memory

 Today, the 8-bit word is used exclusively
 Byte

Memory – address space

0

2N-1

1
2

2N-2

1234
address

Memory – physical view
 2D array

 Row x column
 Select, access, deselect row
 Timing

 CAS (tCL) – Column Access Strobe
 tRCD – Row Address to Column Address Delay
 tRP – Row Precharge
 RAS (tRAS) – Row Active Time

C Row (14 bits) Bank (3 bits) Column(11 bits) Byte in bus (3 bits)

Column decoder

R
ow

 deco der

Data representation – integer
numbers
 Unsigned numbers

 Simple binary representation of a number
 Usual sizes

 1, 2, 4, 8 bytes
 Represented range

 [0; 2N-1]
 Signed numbers

 Two’s complement
 Bitwise negation + 1
 One 0
 Compatible with unsigned arithmetic
 Asymmetric range

 [-2N-1;2N-1-1]

Data representation – floating
point numbers
 IEEE 754
 Hidden bit convention

 Memory representation for SP, DP
 Use the smallest representable exponent

 Hide leading bit of significand, it is always 1
 Exponent

 Bias (FP=127, DP=1023)
 Special values

 Value

Data representation -
endianess
 How to store multi-byte numbers?
 Big endian

 MSB first, LSB last
 PowerPC

 Little endian
 LSB first, MSB last
 Intel

 Example
 Store 32-bit number 0x0A0B0C0D

Data alignment – inner
padding
 Modern CPUs require data in memory aligned to

their size
 E.g. integer (4B) must have address aligned to 4

struct dem {
 char c;
 double d;
 int i;
};

c

d

i

A 1B
A+1

A+9

8B

4B

A+13

c

d

i

A 1B

A+8

A+16

8B

4B

A+20

7B

Data alignment – outer
padding

dem arr[2];
c

d

i

A 1B

A+8

A+16

8B

4B
A+20

7B

c

d

i

1B

8B

4B

7B

A+28

A+36

A+40

arr[0]

arr[1]%8?

c

d

i

A 1B

A+8

A+16

8B

4B

A+24

7B

c

d

i

1B

8B

4B

7B

A+32

A+40

A+48

arr[0]

arr[1]

4B

4B

Memory allocation
 Task

 Locate a block of unused memory of sufficient size
 Allocate portions from a large pool of memory

 Heap, memory arena/pool
 Lifecycle

 Allocate a block
 Different strategies, allocators

 Use the block
 Free the block

 Explicitly, garbage collector

Fragmentation
 Internal

 Allocated more memory than needed in a block
 External

 Free memory separated into small blocks and
interspersed by allocated memory

requested

allocated

Dynamic memory allocation
 Contiguous allocation of variable size
 Free blocks evidence

 Linked list
 Bitmap

 Each bit represents a block of a fixed size

0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0

Allocation algorithms
 First fit

 Start from the beginning
 Find the first free space big enough to accommodate required block size
 Pros: fast, simple; Cons: can divide larger blocks

 Next fit
 Like the first fit, but starts from the last position
 Pros: fast, doesn’t make fragmentation on the start of the heap

 Best fit
 Start from the beginning, find the smallest space big enough
 Pros: keeps large blocks; Cons: slower, creates many tiny blocks

 Worst fit
 Start from the beginning, find the largest space
 Cons: divides large blocks

Buddy memory allocation
 Blocks of 2N size

 Address aligned to 2N

 Find the smallest 2N block fitting the required size
 “List” of free blocks lists with fixed sizes 2N

 If there are no small blocks, create them dividing larger
blocks
 Buddies

 Find the buddy address by XORing my address with the block size
 Merge blocks back when both buddies are free
 Significant internal fragmentation

Buddy memory allocation

64

128

512

256

1k

2k

4k

8k

16k

A:1024,S:512

A:16384,S:16k

Req 200B

A:1024,S:256

A:1280,S:256

Computer memory hierarchy

reg

cache

RAM

persistent RAM

SSD, flash disks

HDD

tapes

Size

Speed
PricePower on

Power off

Cache
 HW or even SW

 A structure holding data
 Future requests for that data can be served faster
 Generic cache operation

 Make a request for data
 Are data placed in the cache?
 If they are, return them, otherwise do a slow calculation/access

 Cache in CPU
 Hides memory latency
 Based on locality of reference
 CPU cache operation

 Make a request for data in the memory
 Are data placed in the cache? Look in all levels of cache in the CPU from the fastest L1 to

the slowest LLC
 If they are, return them to the execution unit in a CPU core, otherwise do a full memory

access

Cache terminology
 Cache line/entry

 Caches are organized in lines
 Usual size is 64B

 Cache hit
 Request served from the cache
 Success rate around 97%

 Cache miss
 Data not found in a cache hierarchy, do a full memory access
 Load data from the memory to a cache line

 Select either a free cache line or select a victim cache line
 Store modified cache lines back to the memory

 Cache line state
 MESI

Associative memory
 Associative memory

 Very fast
 Content based

addressing
 Used in CPU caches

138
114
21
64

key value

Cache
line
number

21

RAM

64

114

138

NUMA
 Multiprocessors

 SMP – Symmetric multiprocessing
 NUMA – Non-uniform memory access

CPU1 CPU2

System bus

RAM

CPU1

CPU2 CPU4

CPU3

RAM4

RAM3

RAM2

RAM1

RAM1

Address space

RAM2

RAM4

RAM3

Computer Systems
Programming languages

Jakub Yaghob

Naïve view of a compiler

Source code
in my favorite
programming
language The compiler

Executable
for my
favorite
operating
system

Error messages

Formal view of a compiler
 From slides of the course Compiler Principles

 Let’s have an input language Lin generated by a grammar Gin

 Let’s have an output language Lout generated by a grammar
Gout or accepted by an automaton Aout

 The compiler is a mapping Lin→Lout, where for all win in Lin exist
wout in Lout. The mapping does not exist for win not in Lin

 Don’t worry!
 You have to visit Automata and Grammars (NTIN071) course

(obligatory) and then Compiler Principles (NSWI098) course
(elective)

Naïve view of a grammar
 Formal description of a language

 Rules
 Lexical elements

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement

More practical view of a
translation

Preprocessor Compiler

AssemblerLinker

Libraries
Objects

Source
code .pp

.asm

.objExecutable
code

Interface

Memory organization
 Memory organization during procedural

program execution

Heap

Code

Static data

Stack

Heap

Code

Uninitialized static data

Stack for thread n

Stack for thread 1

Constants
Initialized static data

Linker/librarian/loader
 Library

 A collection of compiled source modules and other resources
 Static, dynamic

 Linking
 “Gluing” the results of the different translations and libraries

together into one executable for given OS
 Relocations
 Positions independent code

 Loader
 Part of OS, loads the executable into memory
 Relocation again

Linking

CCA.C A.O
Code.A

Constants.A
Static data.A

CCB.C B.O Code.B

Constants.B

Static data.B

Linker

PQ.LIB

Code.P
Constants.P
Static data.P

Code.Q
Constants.Q
Static data.Q

APP.EXE

Code.A

Constants.A

Static data.A

Code.Q

Constants.Q

Static data.Q

Code.B
Constants.B
Static data.B

Run-time
 Static language support

 Compiler
 Library interface

 Header files
 Dynamic language support

 Run-time program environment
 Storage organization
 Memory content before execution
 Constructors and destructors of global objects

 Libraries
 Calling convention

Return address

Function call – activation
record (stack frame)

 Saved machine status
 Return address to the code
 Registers

 Control link
 Activation record of the caller

Return value

Actual parameters

Control link

Saved machine status

Local data

Temporaries

Calling convention
 Calling convention

 Public name mangling
 Call/return sequence for functions and procedures

 Housekeeping responsibility
 Parameter passing

 Registers, stack
 Order of passed parameters

 Return value
 Registers, stacks

 Registers role
 Parameter passing, scratch, preserved

Public name mangling
 Real meaning

 mangle
 mandlovat
 rozsekat, roztrhat, rozbít, rozdrtit, těžce poškodit, potlouci, pohmožditi
 přen. pokazit, znetvořit, k nepoznání změnit, překroutit, zkomolit

 Examples:
long f1(int i, const char *m, struct s *p)

_f1 MSVC IA-32 C __cdecl
@f1@12 MSVC IA-32 C __fastcall
_f1@12 MSVC IA-32 C __stdcall
?f1@@YAJHPBDPAUs@@@Z MSVC IA-32 C++
_f1 GCC IA-32 C
__Z2f1iPKcP1s GCC IA-32 C++
f1 MSVC IA-64 C
?f1@@YAJHPEBDPEAUs@@@Z MSVC IA-64 C++

Call/return sequence

Parameters, return value

Links, machine state

Local and temporal data

Parameters, return value

Links, machine state

Local and temporal data

Caller’s
activation

record

Callee’s
activation

record FP

Caller’s
responsibility

Callee’s
responsibility

C

Parameter passing
 Call by value

 Actual parameter is evaluated and the value is passed
 Input parameters, the parameter is like a local variable
 C

 Call by reference
 The caller passes a pointer to the variable
 Input/output parameters
 & in C++

BigV fnc(int v, int &rv);
BigV r = fnc(a, b);

a = 5

b = 8

1234

2345

BigV

rv = 2345
v = 5
RA

Variables
 Named memory holding a value
 Has a type
 Storage

 Static data
 Global variables in C

 Stack
 Local variables in C

 Heap
 Dynamic memory in C/C#

 Dictionary
 In Python
 Not a storage, it is a dynamic structure

Heap
 Storage for dynamic memory
 Allocate

 Use all features from dynamic memory allocation
 Free blocks evidence
 Allocation algorithms

 Extremely simple and fast incremental allocation

 Deallocate
 Explicit action in some languages

 C, C++
 Automatic deallocation by garbage collection

 Remove burden and errors
 Works only with good knowledge of live objects and references

Garbage collection
 Automatic removal of unused memory blocks

 Advantages
 No dangling pointers, no double free, no memory leaks, allows heap

consolidation and fast allocation
 Disadvantages

 Performance impact, even execution stall, unpredictable behavior
 GC strategies

 Tracing
 Reachable objects from live objects

 Reference counting
 Problems with cycles, space and speed overhead

 Advanced versions for languages with heavy use

Q

P Q

P

Virtual machine and containers
 VM = Emulation of a computer system

 Full virtualization
 Substitute for a real machine, allows execution of entire OS
 Hypervisor shares real HW, native execution, virtual HW
 Isolation, encapsulation, compatibility

 Process VM
 Runs as an application inside OS
 Provides platform-independent programming environment

 Abstract machine (instructions, memory, registers, …)
 Java VM, .NET CLR

 Slow execution
 JIT, AOT

 Container = OS-level virtualization
 OS kernel allows existence of multiple isolated user space instances

Physical machine

 Physical HW
 CPU, RAM, disks,

I/O
 Underutilized HW

 SW
 Single active OS
 OS controls HW

Virtual machine
 HW-level abstraction

 Virtual HW: CPU, RAM,
disks, I/O

 Virtualization SW
 Decouples HW and OS
 Multiplexes physical HW

across multiple guest VMs
 Strong isolation between

VMs
 Manages physical

resources, improves
utilization

Portability
 Source code portability

 CPU architecture
 Different type sizes

 C, C++
 Fixed type sizes

 C#, Java
 Compiler

 Different language “flavors”
 C++ - gcc, msvc, clang, …

 Use only syntax and library from a language standard
 OS

 Different system/library calls
 Linux, Windows

 Sometimes easy
 BSD sockets

Computer Systems
Operating systems

Jakub Yaghob

Operating system – role

 Abstract machine
 Presented by kernel

API
 System calls

 Hide HW complexity
 Resource manager

 All HW managed by
OS

 Sharing HW among
applications

CPU modes
 User mode

 Available to all application
 Limited or no access to some resources

 Registers, instructions
 Kernel (system) mode

 More privileged
 Used by OS or by only part of OS
 Full access to all resources

Architecture – monolithic
 Monolithic systems

 Big mess – no structure
 “Early days”

 Linux
 Collection of procedures

 Each one can call another one
 No information hiding
 Efficient use of resources, efficient code
 Originally no extensibility

 Now able to load modules dynamically

Entry point

Service
proc

Utility
proc

Architecture – layered
 Evolution of monolithic system

 Organized into hierarchy of layers
 Layer n+1 uses exclusively services supported by

layer n
 Easier to extend and evolve

Architecture – microkernel
 Microkernel architecture

 Move as much as possible from the kernel space
to the user space

 Communication between user modules
 Message passing
 Client/server

 Extendable
 Secure
 Reliable

μKernel

Svc 1 Svc 2 App

Linux kernel architecture

Windows kernel architecture

Devices
 Terminology

 Device
 “a thing made for a particular purpose”

 Device controller
 Handles “electrically” connected devices

 Signals on a “wire”, A/D converters
 Devices connected in a topology

 Device driver
 SW component, part of OS
 Abstract interface to the upper layer in OS
 Specific for a controller or a class/group of controllers

Devices topology

DCBus Dev1 Dev2 Dev3 DC

Dev1

Dev2

Dev3

Ring

Star DC

Dev1 Dev2

Dev3 Dev4

Tree
DC

Dev1 Dev2

Dev3 Dev4

Hub1

Device handling
1. Application issues an I/O request
2. Language library makes a system call
3. Kernel decides, which device is involved
4. Kernel starts an I/O operation using device

driver
5. Device driver initiates an I/O operation on

a device controller
6. Device does something
7. Device driver checks for a status of the

device controller
8. When data are ready, transfer data from

device to the memory
9. Return to any kernel layer and make other

I/O operation fulfilling the user request
10. Return to the application

User I/O libraries

Device independent
I/O

Device
driver

Device
driver

Device
controller

Device
controller

Device Device

User

Kernel

HW

Device intercommunication
 Polling

 CPU actively checks device status change
 Interrupt

 Device notifies CPU that it needs attention
 CPU interrupts current execution flow
 IRQ handling
 CPU has at least one pin for requesting interrupt

 DMA (Direct Memory Access)
 Transfer data to/from a device without CPU attention
 DMA controller
 Scatter/gather

Interrupt types
 External

 HW source using an IRQ pin
 Masking

 Exception
 Unexpectedly triggered by an instruction
 Trap or fault
 Predefined set by CPU architecture

 Software
 Special instruction
 Can be used for system call mechanism

Interrupt request handling
 What happens, when an interrupt occurs?

 CPU decides the source of the interrupt
 Predefined
 IRQ controller

 CPU gets an address of interrupt handler
 Fixed
 Interrupt table

 Current stream of instructions is interrupted, CPU begins execution of
interrupt handler’s instructions
 Usually between instructions
 Privilege switch usually happens, interrupt handler is part of a kernel

 Interrupt handler saves the CPU state
 Interrupt handler do something useful
 Interrupt handler restores the CPU state
 CPU continues with original instruction stream

CPU

IRQ
controller

INT#INT

Processing
 Program

 A passive set of instruction and data
 Created by a compiler/linker

 Process
 An instance of a program created by OS
 It contains program code and data

 Process address space
 The program is “enlivened” by an activity

 Instructions are executed by CPU
 Owns other resources

 Thread
 One activity in a process
 Stream of instructions executed by CPU
 Unit of kernel scheduling

 Fiber
 Lighter unit of scheduling
 Cooperative scheduling

 Running fiber explicitly yields Heap

Code

Static data
Stack for thread 1

Stack for thread 2

T1
T2

Processing
 Scheduler

 Part of OS
 Uses scheduling algorithms to assign computing resources to scheduling

units
 Multitasking

 Concurrent executions of multiple processes
 Multiprocessing

 Multiple CPUs in one system
 More challenging for the scheduler

 Context
 CPU (and possibly other) state of a scheduling unit

 Registers (including PC)
 Context switch

 Process of storing the context of a scheduling unit, which is now paused, and
restoring the context of another scheduling unit, which resumes its execution

Real-time scheduling
 Real-time scheduling

 RT process has a start time (release time) and a stop time
(deadline)

 Release time – time at which the process must start after
some event occurred

 Deadline – time by which the task must complete
 Hard – no value to continue computation after the deadline
 Soft – the value of late result diminishes with time after the deadline

Unit of scheduling state
 Created

 Awaits admission
 Terminated

 Until parent process waits
for result

 Ready
 Wait for scheduling

 Running
 CPU assigned

 Blocked
 Wait for resources

Created

BlockedReady

Running

Terminated
(zombie)

Multitasking
 Cooperative

 OS does not initiate context switch
 Unit of scheduling must explicitly and voluntarily yield control
 All processes must cooperate
 Scheduling in OS reduced on starting the process and making context switch

after the yield
 Preemptive

 Each running unit of scheduling has assigned a time-slice
 OS needs some external source of interrupt

 Timer
 If the unit of scheduling blocks or is terminated before the time-slice ends,

nothing interesting will happen
 If the unit of scheduling consumes the whole time-slice, it will be interrupted by

the external source, OS will make context switch, and the unit of scheduling is
moved to the READY state

Scheduling
 Objectives

 Maximize CPU utilization
 Fair allocation of CPU
 Maximize throughput

 Number of processes that complete their execution per time unit
 Minimize turnaround time

 Time taken by a process to finish
 Minimize waiting time

 Time a process waits in READY state
 Minimize response time

 Time to response for interactive applications

Scheduling – priority
 Priority

 A number expressing the importance of the process
 Unit of scheduling with greater priority should be scheduled before

unit of scheduling with lower priority
 Static priority

 Assigned at the start of the process
 Users hierarchy or importance

 Dynamic priority
 Adding fairness to the scheduling
 The priority of the process is the sum of a static priority and dynamic priority
 Once in a time the dynamic priority is increased for all READY units of

scheduling
 The dynamic priority is initialized to 0 and is reset to 0 after the unit of

scheduling is scheduled for execution

Scheduling algorithms – non-
preemptive
 First Come, First Serve (FCFS)

 Simple queue, process enters the queue on the
tail, the head process has CPU assigned and
runs, then is removed from the queue

 Shortest Job First
 Maximizes throughput
 Expected job execution time must be known in

advance
 Longest Job first

Scheduling algorithms –
preemptive
 Round Robin

 Like FCFS, there is a queue
 Each unit of scheduling has assigned time-slice
 If the unit of scheduling consumes whole time-

slice or is blocked, it will be assigned to the tail of
the queue

US US USUS CPU

Scheduling algorithms –
preemptive
 Multilevel feedback-queue

 Multiple queues
 Each level has assigned greater time-slice

 If the unit of scheduling consumes the whole time-slice, it will be
assigned to the lower queue

 If the unit of scheduling blocks before consuming the whole time-slice, it
will be assigned to the higher queue

 Schedule head unit of scheduling from the highest non-empty queue

US US USUS CPU

US US USUS

US US USUS

Scheduling algorithms -
preemptive
 Completely fair scheduler (CFS)

 Implemented in Linux kernel
 Processes are in red-black tree

 Indexed by execution time
 Maximum execution time

 Time-slice calculated for each process
 The time waiting to run divided by the total number of processes

 Scheduling algorithm
 The leftmost node is selected (lowest execution time)
 If the process completes its execution, it is removed from scheduling
 If the process reaches its maximum execution time or is somehow

stopped or interrupted, it is reinserted into the tree based on its new
execution time

File
 File

 Collection of related information
 Stored on secondary storage (?)
 Abstract stream of data

 Operations
 Open, close, read, write, seek

 Access
 Sequential, random

 Type
 Extension

 Attributes
 Name, timestamps, size, access, …

File directory
 Directory

 Collection of files
 Efficiency – a file can be located more quickly
 Naming – better navigation for users
 Grouping – logical grouping of files

 Usually represented as a file of a special type
 Store file attributes
 Hierarchy or structure

 Root
 Operations

 Create/delete/rename file/subdirectory
 Search for a name
 List members

File system
 File system

 Controls, how and where data are stored
 Creates an abstraction for files and directories
 Responsibility

 Name translation
 File data location
 Free blocks management

 Bitmap, linked list
 Local file system

 Stored on HDD, SSD, removable media
 FAT, NTFS, ext234, XFS, …

 Network file system
 Access to files/directories over a network stack
 NFS, CIFS/SMB, …

FAT
 File Allocation Table (FAT)

 Simple, old, MS-DOS, many variants used today
 One structure (FAT) for managing free blocks and file data location
 Directory

 Sequence of entries with fixed size and attributes
 Starting cluster, name+ext, size, timestamps, attributes

 Root in fixed position

Directory

a.txt
13

b.txt
3

02 103 04 -15

06 07 58 09

1510 011 012 813

-114 1415 016 017

Boot record

FAT1

Data

FAT2

FAT

Root directory

ext2
 Second extended file system (ext2)

 Simple, old, Linux
 Inode (index node)

 Represents one file/directory
 Directory

 Sequence of entries with fixed structure
 Inode, name

Boot record

Block group 0

Block group 1

Block group N

Superblock
Descriptor

Data bitmap
Inode bitmap

Data block

Inode table

Info

Block 0
Block 1

Block 11
Block 12 (I)

Block 13 (DI)
Block 14 (TI)

Data
block
Data
block

Data
block

Block 0

Block 127

Data
block

Data
block

