
Computer Systems
Introduction

Jakub Yaghob

Literature and slides
 Web page and slides

 https://www.ksi.mff.cuni.cz/teaching/nswi170-web/
 Books

 Silberschatz A.: Operating Systems Concepts,
Willey

 Hennessy J.L.: Computer Architecture: A
Quantitative Approach, Morgan Kaufmann

https://www.ksi.mff.cuni.cz/teaching/nswi170-web/
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/

Course
 Lectures

 Weekly
 Exam

 Short written test
 Programming task for Arduino

 Labs
 Playing with Arduino with an added shield
 Biweekly, assignments, home assignment
 Upload your assignment to the SIS module Study Group

Roster
 Borrow your Arduino in the library!

Course content
 Content

 C language
 CPU

 Architecture
 Instruction set
 Interrupt, DMA

 Memory
 Addressing, alignment
 Memory hierarchy, cache

 Programming languages
 Compilation, linking, memory organization
 Function calls, parameter passing
 Heap, runtime, JIT

 Operating systems
 Architecture, process, thread, scheduling
 Virtual memory

 Parallel programming
 Synchronization

Computer Systems
C/C++ language

Jakub Yaghob

Features
 Procedural programming language
 Structured, imperative programming
 Recursion
 Static type system
 C constructs map efficiently to machine instructions

 Operating systems
 HPC
 Embedded systems

 Case sensitive, ignore all whitespaces

History

B
(Bell Labs. 1969)

BCPL
(Cambridge 1966) C with classes

(Stroustrup 1979)

The C++ programming language
(Stroustrup 1985)

C++98
(ISO/IEC 14882 1998)

C++03
(ISO/IEC 14882 2003)

C++TR1
(ISO/IEC 19768 2007)

C++11
(ISO/IEC 14882 2011)

C
(Bell Labs. 1971)

K&R C
(Kernigan & Ritchie 1978)

C++14
(2014)

Objective-C
(Cox & Love 1981)

Object-Oriented Programing
(Cox 1986)

Objective-C 2.0
(Apple 2006)

Objective-C++
(Apple 2010)

ANSI C
(ANSI X3J11 1989)

C11
(ISO/IEC 9899 2011)

C99
(ISO/IEC 9899 1999)

almost supersetinspired

superset significant change

C#
(Microsoft 2002)

Java
(Sun 1995)

C++/CLI
(Microsoft 2005) C++17

(2017)

C++20
(2020)

C18
(2018)

Example
/* this is my best program */
#include <stdio.h>

int x; // global variable

int f(int p) { // function
 int q = p+x;// local variable
 return q;
}

Constants
 Integer numbers

 Decimal number
123, -18

 Hexadecimal number
0x7a

 Floating point number
-1.234e-5

 String
"foo bar"

 Char
'a'

 Escape sequence
 \n – LF
 \r – CR
 \t – TAB
 \\ – \
 \' – ’
 \" – ”
 \xab – char 0xab

Basic types
 Integer types

 Base
char, int

 Modifiers
short, long
signed, unsigned

 Auxiliary
size_t

 Floating point types
float, double

 Other types
void, bool

 Implicit conversion
 Conversion rank

Statements
 Compound statement (block)
{ }

 Expression statement
expr ;

 If statement
if (expr) stmt
if (expr) stmt else stmt

 Return from a function
return expr;

Statements – switch
switch (expr) {
case 0:

// something
break;

case 1:
// something else
break;

case 2:
case 3:

// common code for 2 and 3
break;

default:
// do something else otherwise
break;

}

Statements – loops
 While
while (expr) stmt

 Do-while
do stmt while (expr);

 For
for(expri ; exprt ; exprs) stmt

 Jumps
break;
continue;

Expression
 Arithmetic
+, -, *, /, %
 No //
++, --

 Comparison
<, <=, >, >=, ==, !=

 Bitwise
~, &, |, ^, <<, >>

 Logical
&&, ||, !

 Pointers
&, *

 Assignment
=, +=, -=, *=, /=, %=, &=,
|=, ^=

 Variable/type size
sizeof

 Ternary expr
test ? e1 : e2

Variables
 A named value stored in a memory
 Must be declared before initialization and using
 Variable scope
 Storage class

int i, j;
int c = 42;
static int s = 0;

Array
 Collection of elements each identified by at least one index
 Contiguous area of memory
 Constant size
 Correct alignment
 Row-major order
 Zero based index

int u[4];
int p[] = { 1, 2, 3 };
int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } };

1

0, 0

2

0, 1

3

0, 2

4

1, 0

5

1, 1

6

1, 2

Structure
 Collection of fields (members)
 Inner alignment (padding)
 Outer alignment (padding)

struct point2d { int x, y; }
struct data {

char c;
double d;
int i;

};

c0

d8

i12

Remnants
 Constants
#define C 13
constexpr int C = 13;

 Enumerated type
enum e { RED, BLUE, GREEN };

 Automatic type
 Type inferred from an initialization expression
auto a = 3;

 Importing a module
#include <system.h>

Starting point
 Always function main

 Return value is an exit code
 Without return 0 exit code assumed

 Basic version
int main() { }

 Advanced version
int main(int argc, char **argv) { }

Pointer
 Each variable somewhere in memory
 Address
 A variable holding an address = pointer

int v = 8;
int *pv = &v;
*pv = 4;

8 v1234

1234 pv6666

Functions, parameter passing
– C
 Parameters in C always passed by value
 Output parameters use pointer

void pvec(point2d in, point2d *out)
{

out->x = in.y;
out->y = in.x;

}

Reference
 Fixed pointer

 Address not reassignable

int v = 8;
int &rv = v;
rv = 4;

8 v1234

1234 rv6666

Functions, parameter passing
– C++
 Parameters in C++ passed by value or by

reference
 Output parameters by reference

void pvec(point2d in, point2d &out)
{
out.x = in.y;
out.y = in.x;

}

Computer Systems
CPU

Jakub Yaghob

Von Neumann architecture
 Simple, slower

CPU Memory

I/O

Harvard architecture
 Microcontrollers
 Multiple address spaces

CPUInstruction
Memory

Data
Memory

I/O

Real PC architecture
 Sandy Bridge

mouse
LAN

Lan
Adap

South Bridge (PCH)Audio
Codec

DVD
Drive

Hard
DiskPa

ra
lle

l P
or

t

Se
ria

l P
or

t

Floppy
Drive

PS/2
keybrd/
mouse

CacheDDRIII
Channel 1 Mem

BUSDDRIII
Channel 2

Memory
controller Core

Core

D-sub, HDMI, DVI, Display port

External
Graphics

Card
PCI express ×16

GFX

Display link

2133-1066
MHz

Line in
Line out

S/PDIF in
S/PDIF out

Super I/O
LPC

USB SATA SATA

BIOS PCI express ×1

exp
slots

System
Agent

4×DMI

CPU
 Architecture

 HW
 ISA

 "Simple" machine
 Executes instructions

 Instruction – simple command

Instructions - motivation
 How can we execute the following code?

if(a<3) b = 4; else c = a << 2;

for(int i=0;i<5;++i) a[i] = i;

int f(int p) { return p+1; }
void g() { auto r = f(42); }

Instruction classes
 Load instructions
 Store instructions
 Move instruction
 Arithmetic and logic instructions
 Jumps

 Unconditional x conditional
 Direct x indirect x relative

 Call, return
 …

Registers
 Types

 General, integer, floating point, address, branch,
flags, predicate, application, system, vector, …

 Naming
 Direct x stack

 Aliasing

Registers – example 32-bit x86
EAX AX AH AL CS

EBX BX BH BL DS

ECX CX CH CL ES

EDX DX DH DL SS

ESI SI FS

EDI DI GS

EBP BP EFLAGS FLAGS

ESP SP EIP IP

Registers – example IA-64

MIPS – simple assembler
 Execution environment

 32-bit registers r0-r31
 r0 is always 0, writes are ignored
 r31 is a link register for the jal instruction

 No stack
 No flags
 PC register

MIPS – register aliases
Register Name Purpose Preserve
$r0 $zero 0 N/A

$r1 $at Assembler temporary No

$r2-$r3 $v0-$v1 Return value No

$r4-$r7 $a0-$a3 Function arguments No

$r8-$r15 $t0-$t7 Temporaries No

$r16-$r23 $s0-$s7 Saved temporaries Yes

$r24-$r25 $t8-$t9 Temporaries No

$r26-$r27 $k0-$k1 Kernel registers – DO NOT USE N/A

$r28 $gp Global pointer Yes

$r29 $sp Stack pointer Yes

$r30 $fp Frame pointer Yes

$r31 $ra Return address Yes

MIPS – instructions
 Arithmetic

 add $rd,$rs,$rt
 R[rd] = R[rs]+R[rt]

 addi $rd,$rs,imm16
 R[rd] = R[rs]+signext(imm16)

 sub $rd,$rs,$rt
 subi $rd,$rs,imm16

ISA comparison
MIPS
ADD $t1,$t1,$t0
ADDI $t1,$t1,1

ADD $t2,$t0,$t1

x86
ADD eax,ebx
ADD eax,1

MOV eax,ebx
ADD eax,ecx

MIPS – instructions
 Logic operations

 and/or/xor/nor $rd,$rs,$rt
 andi/ori/xori $rd,$rs,imm16

 R[rd] = R[rs] and/or/xor zeroext(imm16)
 No not instruction, use nor $rd,$rs,$rs

 Shifts
 sll/slr $rd,$rs,shamt

 R[rd] = R[rs] << / >> shamt
 sra $rd,$rs,shamt

ISA comparison
MIPS
NOR $t1,$t2

SLL $t1,$t1,3

x86
MOV eax,ebx
NOT eax

SHL eax,3

MIPS – instructions
 Memory access

 lw $rd,imm16($rs)
 R[rd] = M[R[rs] + signext32(imm16)]

 sw $rt,imm16($rs)
 M[R[rs] + signext32(imm16)] = R[rt]

 lb $rd,imm16($rs)
 R[rd] = signext32(M[R[rs] + signext32(imm16)])

 lbu $rd,imm16($rs)
 R[rd] = zeroext32(M[R[rs] + signext32(imm16)])

 sb $rt,imm16($rs)
 M[R[rs] + signext32(imm16)] = R[rt]

 Moves
 li $rd,imm32

 R[rd] = imm32
 move $rd,$rs

 R[rd] = R[rs]

ISA comparison
MIPS
LW $t1,1234($t0)
SW $t1,1234($t0)
LB $t1,1234($t0)
LI $t1,5678
MOVE $t1,$t0

x86
MOV eax,[ebx+1234]
MOV [ebx+1234],eax
MOV al,[ebx+1234]
MOV eax,5678
MOV eax,ebx

MIPS – instructions
 Jumps

 j addr
 PC = addr

 jr $rs
 PC = R[rs]

 jal addr
 R[31] = PC+4; PC = addr

ISA comparison
MIPS
J label
JR $ra

JAL fnc

x86
JMP label1
JMP [ebx]

CALL fnc

MIPS – instructions
 Conditional jumps

 beq $rs,$rt,addr
 If R[rs]=R[rt] then PC=addr else PC=PC+4

 bne $rs,$rt,addr
 Testing

 slt $rd,$rs,$rt
 If R[rs]<R[rt] then R[rd] = 1 else R[rd] = 0

 sltu $rd,$rs,$rt
 Unsigned version

 slti $rd,$rs,imm16
 If R[rs]<signext(imm16) then R[rd] = 1 else R[rd] = 0

 sltiu $rd,$rs,imm16
 If R[rs]<zeroext(imm16) then R[rd] = 1 else R[rd] = 0

ISA comparison
MIPS
BEQ $t0,$t1,label

SLT $t2,$t1,$t0
BNE $t2,$zero,label

SLTI $t2,$t1,5
BNE $t2,$zero,label

x86
CMP eax,ebx
JZ label

CMP eax,ebx
JL label

CMP eax,5
JL label

Flags
 Only used by some ISA
 Control execution
 Check status of the last instruction
 Usual flags

 Z – zero flag
 S – sign flag
 C – carry flag

CPU
 Architecture

 Memory controller
 Cache hierarchy
 Core
 Registers

 Types
 Logical processor

 Hyper threading
 Instructions

Instruction
 Simple command to the CPU
 Encoding
 Assembler
 Operands
 Instruction flow

 PC
 Stack?

 SP

ISA
 Instruction set architecture

 Abstract model of CPU
 Classification

 CISC – Complex Instruction Set Computer
 RISC – Reduced Instruction Set Computer
 VLIW – Very Long Instruction Word
 EPIC – Explicitly Parallel Instruction Computer

 Orthogonality
 Accumulator

 Load-Execute-Store

CPU – simplified scheme

CORE 0

T0 T4

EU

L1I
L1D

L2

CORE 1

T1 T5

EU

L1I
L1D

L2

CORE 2

T2 T6

EU

L1I
L1D

L2

CORE 3

T3 T7

EU

L1I
L1D

L2

L3/LLC

Package

Real CPU scheme – package
 Intel Coffee Lake

Real CPU
scheme – core

CPU architecture – pipeline
 Current CPU

 14-19 stages

CPU architecture – superscalar
processor
 Current CPU

 5-way, asymmetric

CPU architecture – out-of-
order execution

Decoder

Reservation station (pool)

µOPs

I/V ALU

Port 0 Port 1 Port 5 Port 6 Port 2 Port 3 Port 4 Port 7

I/V ALU AGUAGUAGUI ALUI/V ALU AGU

Load LoadI Logic

Branch
I/F DIV

SQRT

AES

F FMA

String

I/V Logic
I/V MUL

F FMA

Bit scan

I/V Logic

I/V MUL

Comp Int
F ADD

Vec Shuff Store

Branch

Reorder buffer

Computer Systems
Memory

Jakub Yaghob

Memory
 Definition

 Each memory organized into memory cells – bits
 Bits are grouped into words of fixed length

 1, 2, 4, 8, 16, 32, 64, and 128 bits
 Each word can be accessed by a binary address

 N bits
 We can store 2N words in the memory

 Today, the 8-bit word is used exclusively
 Byte

Memory – address space

0

2N-1

1
2

2N-2

1234
address

Memory – physical view
 2D array

 Row x column
 Select, access, deselect row
 Timing

 CAS (tCL) – Column Access Strobe
 tRCD – Row Address to Column Address Delay
 tRP – Row Precharge
 RAS (tRAS) – Row Active Time

C Row (14 bits) Bank (3 bits) Column(11 bits) Byte in bus (3 bits)

Column decoder

R
ow

 deco der

Data representation – integer
numbers
 Unsigned numbers

 Simple binary representation of a number
 Usual sizes

 1, 2, 4, 8 bytes
 Represented range

 [0; 2N-1]
 Signed numbers

 Two’s complement
 Bitwise negation + 1
 One 0
 Compatible with unsigned arithmetic
 Asymmetric range

 [-2N-1;2N-1-1]

Data representation – floating
point numbers
 IEEE 754
 Hidden bit convention

 Memory representation for SP, DP
 Use the smallest representable exponent

 Hide leading bit of significand, it is always 1
 Exponent

 Bias (FP=127, DP=1023)
 Special values

 Value

Data representation -
endianess
 How to store multi-byte numbers?
 Big endian

 MSB first, LSB last
 PowerPC

 Little endian
 LSB first, MSB last
 Intel

 Example
 Store 32-bit number 0x0A0B0C0D

Data alignment – inner
padding
 Modern CPUs require data in memory aligned to

their size
 E.g. integer (4B) must have address aligned to 4

struct dem {
 char c;
 double d;
 int i;
};

c

d

i

A 1B
A+1

A+9

8B

4B

A+13

c

d

i

A 1B

A+8

A+16

8B

4B

A+20

7B

Data alignment – outer
padding

dem arr[2];
c

d

i

A 1B

A+8

A+16

8B

4B
A+20

7B

c

d

i

1B

8B

4B

7B

A+28

A+36

A+40

arr[0]

arr[1]%8?

c

d

i

A 1B

A+8

A+16

8B

4B

A+24

7B

c

d

i

1B

8B

4B

7B

A+32

A+40

A+48

arr[0]

arr[1]

4B

4B

Memory allocation
 Task

 Locate a block of unused memory of sufficient size
 Allocate portions from a large pool of memory

 Heap, memory arena/pool
 Lifecycle

 Allocate a block
 Different strategies, allocators

 Use the block
 Free the block

 Explicitly, garbage collector

Fragmentation
 Internal

 Allocated more memory than needed in a block
 External

 Free memory separated into small blocks and
interspersed by allocated memory

requested

allocated

Dynamic memory allocation
 Contiguous allocation of variable size
 Free blocks evidence

 Linked list
 Bitmap

 Each bit represents a block of a fixed size

0 0 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0

Allocation algorithms
 First fit

 Start from the beginning
 Find the first free space big enough to accommodate required block size
 Pros: fast, simple; Cons: can divide larger blocks

 Next fit
 Like the first fit, but starts from the last position
 Pros: fast, doesn’t make fragmentation on the start of the heap

 Best fit
 Start from the beginning, find the smallest space big enough
 Pros: keeps large blocks; Cons: slower, creates many tiny blocks

 Worst fit
 Start from the beginning, find the largest space
 Cons: divides large blocks

Buddy memory allocation
 Blocks of 2N size

 Address aligned to 2N

 Find the smallest 2N block fitting the required size
 “List” of free blocks lists with fixed sizes 2N

 If there are no small blocks, create them dividing larger
blocks
 Buddies

 Find the buddy address by XORing my address with the block size
 Merge blocks back when both buddies are free
 Significant internal fragmentation

Buddy memory allocation

64

128

512

256

1k

2k

4k

8k

16k

A:1024,S:512

A:16384,S:16k

Req 200B

A:1024,S:256

A:1280,S:256

Computer memory hierarchy

reg

cache

RAM

persistent RAM

SSD, flash disks

HDD

tapes

Size

Speed
PricePower on

Power off

Cache
 HW or even SW

 A structure holding data
 Future requests for that data can be served faster
 Generic cache operation

 Make a request for data
 Are data placed in the cache?
 If they are, return them, otherwise do a slow calculation/access

 Cache in CPU
 Hides memory latency
 Based on locality of reference
 CPU cache operation

 Make a request for data in the memory
 Are data placed in the cache? Look in all levels of cache in the CPU from the fastest L1 to

the slowest LLC
 If they are, return them to the execution unit in a CPU core, otherwise do a full memory

access

Cache terminology
 Cache line/entry

 Caches are organized in lines
 Usual size is 64B

 Cache hit
 Request served from the cache
 Success rate around 97%

 Cache miss
 Data not found in a cache hierarchy, do a full memory access
 Load data from the memory to a cache line

 Select either a free cache line or select a victim cache line
 Store modified cache lines back to the memory

 Cache line state
 MESI

Associative memory
 Associative memory

 Very fast
 Content based

addressing
 Used in CPU caches

138
114
21
64

key value

Cache
line
number

21

RAM

64

114

138

NUMA
 Multiprocessors

 SMP – Symmetric multiprocessing
 NUMA – Non-uniform memory access

CPU1 CPU2

System bus

RAM

CPU1

CPU2 CPU4

CPU3

RAM4

RAM3

RAM2

RAM1

RAM1

Address space

RAM2

RAM4

RAM3

Computer Systems
Programming languages

Jakub Yaghob

Naïve view of a compiler

Source code
in my favorite
programming
language The compiler

Executable
for my
favorite
operating
system

Error messages

Formal view of a compiler
 From slides of the course Compiler Principles

 Let’s have an input language Lin generated by a grammar Gin

 Let’s have an output language Lout generated by a grammar
Gout or accepted by an automaton Aout

 The compiler is a mapping Lin→Lout, where for all win in Lin exist
wout in Lout. The mapping does not exist for win not in Lin

 Don’t worry!
 You have to visit Automata and Grammars (NTIN071) course

(obligatory) and then Compiler Principles (NSWI098) course
(elective)

Naïve view of a grammar
 Formal description of a language

 Rules
 Lexical elements

iteration-statement:
while (expression) statement
do statement while (expression) ;
for (expressionopt ; expressionopt ; expressionopt) statement

More practical view of a
translation

Preprocessor Compiler

AssemblerLinker

Libraries
Objects

Source
code .pp

.asm

.objExecutable
code

Interface

Memory organization
 Memory organization during procedural

program execution

Heap

Code

Static data

Stack

Heap

Code

Uninitialized static data

Stack for thread n

Stack for thread 1

Constants
Initialized static data

Linker/librarian/loader
 Library

 A collection of compiled source modules and other resources
 Static, dynamic

 Linking
 “Gluing” the results of the different translations and libraries

together into one executable for given OS
 Relocations
 Positions independent code

 Loader
 Part of OS, loads the executable into memory
 Relocation again

Linking

CCA.C A.O
Code.A

Constants.A
Static data.A

CCB.C B.O Code.B

Constants.B

Static data.B

Linker

PQ.LIB

Code.P
Constants.P
Static data.P

Code.Q
Constants.Q
Static data.Q

APP.EXE

Code.A

Constants.A

Static data.A

Code.Q

Constants.Q

Static data.Q

Code.B
Constants.B
Static data.B

Run-time
 Static language support

 Compiler
 Library interface

 Header files
 Dynamic language support

 Run-time program environment
 Storage organization
 Memory content before execution
 Constructors and destructors of global objects

 Libraries
 Calling convention

Return address

Function call – activation
record (stack frame)

 Saved machine status
 Return address to the code
 Registers

 Control link
 Activation record of the caller

Return value

Actual parameters

Control link

Saved machine status

Local data

Temporaries

Calling convention
 Calling convention

 Public name mangling
 Call/return sequence for functions and procedures

 Housekeeping responsibility
 Parameter passing

 Registers, stack
 Order of passed parameters

 Return value
 Registers, stacks

 Registers role
 Parameter passing, scratch, preserved

Public name mangling
 Real meaning

 mangle
 mandlovat
 rozsekat, roztrhat, rozbít, rozdrtit, těžce poškodit, potlouci, pohmožditi
 přen. pokazit, znetvořit, k nepoznání změnit, překroutit, zkomolit

 Examples:
long f1(int i, const char *m, struct s *p)

_f1 MSVC IA-32 C __cdecl
@f1@12 MSVC IA-32 C __fastcall
_f1@12 MSVC IA-32 C __stdcall
?f1@@YAJHPBDPAUs@@@Z MSVC IA-32 C++
_f1 GCC IA-32 C
__Z2f1iPKcP1s GCC IA-32 C++
f1 MSVC IA-64 C
?f1@@YAJHPEBDPEAUs@@@Z MSVC IA-64 C++

Call/return sequence

Parameters, return value

Links, machine state

Local and temporal data

Parameters, return value

Links, machine state

Local and temporal data

Caller’s
activation

record

Callee’s
activation

record FP

Caller’s
responsibility

Callee’s
responsibility

C

Parameter passing
 Call by value

 Actual parameter is evaluated and the value is passed
 Input parameters, the parameter is like a local variable
 C

 Call by reference
 The caller passes a pointer to the variable
 Input/output parameters
 & in C++

BigV fnc(int v, int &rv);
BigV r = fnc(a, b);

a = 5

b = 8

1234

2345

BigV

rv = 2345
v = 5
RA

Variables
 Named memory holding a value
 Has a type
 Storage

 Static data
 Global variables in C

 Stack
 Local variables in C

 Heap
 Dynamic memory in C/C#

 Dictionary
 In Python
 Not a storage, it is a dynamic structure

Heap
 Storage for dynamic memory
 Allocate

 Use all features from dynamic memory allocation
 Free blocks evidence
 Allocation algorithms

 Extremely simple and fast incremental allocation

 Deallocate
 Explicit action in some languages

 C, C++
 Automatic deallocation by garbage collection

 Remove burden and errors
 Works only with good knowledge of live objects and references

Garbage collection
 Automatic removal of unused memory blocks

 Advantages
 No dangling pointers, no double free, no memory leaks, allows heap

consolidation and fast allocation
 Disadvantages

 Performance impact, even execution stall, unpredictable behavior
 GC strategies

 Tracing
 Reachable objects from live objects

 Reference counting
 Problems with cycles, space and speed overhead

 Advanced versions for languages with heavy use

Q

P Q

P

Virtual machine and containers
 VM = Emulation of a computer system

 Full virtualization
 Substitute for a real machine, allows execution of entire OS
 Hypervisor shares real HW, native execution, virtual HW
 Isolation, encapsulation, compatibility

 Process VM
 Runs as an application inside OS
 Provides platform-independent programming environment

 Abstract machine (instructions, memory, registers, …)
 Java VM, .NET CLR

 Slow execution
 JIT, AOT

 Container = OS-level virtualization
 OS kernel allows existence of multiple isolated user space instances

Physical machine

 Physical HW
 CPU, RAM, disks,

I/O
 Underutilized HW

 SW
 Single active OS
 OS controls HW

Virtual machine
 HW-level abstraction

 Virtual HW: CPU, RAM,
disks, I/O

 Virtualization SW
 Decouples HW and OS
 Multiplexes physical HW

across multiple guest VMs
 Strong isolation between

VMs
 Manages physical

resources, improves
utilization

Portability
 Source code portability

 CPU architecture
 Different type sizes

 C, C++
 Fixed type sizes

 C#, Java
 Compiler

 Different language “flavors”
 C++ - gcc, msvc, clang, …

 Use only syntax and library from a language standard
 OS

 Different system/library calls
 Linux, Windows

 Sometimes easy
 BSD sockets

Computer Systems
Operating systems

Jakub Yaghob

Operating system – role

 Abstract machine
 Presented by kernel

API
 System calls

 Hide HW complexity
 Resource manager

 All HW managed by
OS

 Sharing HW among
applications

CPU modes
 User mode

 Available to all application
 Limited or no access to some resources

 Registers, instructions
 Kernel (system) mode

 More privileged
 Used by OS or by only part of OS
 Full access to all resources

Architecture – monolithic
 Monolithic systems

 Big mess – no structure
 “Early days”

 Linux
 Collection of procedures

 Each one can call another one
 No information hiding
 Efficient use of resources, efficient code
 Originally no extensibility

 Now able to load modules dynamically

Entry point

Service
proc

Utility
proc

Architecture – layered
 Evolution of monolithic system

 Organized into hierarchy of layers
 Layer n+1 uses exclusively services supported by

layer n
 Easier to extend and evolve

Architecture – microkernel
 Microkernel architecture

 Move as much as possible from the kernel space
to the user space

 Communication between user modules
 Message passing
 Client/server

 Extendable
 Secure
 Reliable

μKernel

Svc 1 Svc 2 App

Linux kernel architecture

Windows kernel architecture

Devices
 Terminology

 Device
 “a thing made for a particular purpose”

 Device controller
 Handles “electrically” connected devices

 Signals on a “wire”, A/D converters
 Devices connected in a topology

 Device driver
 SW component, part of OS
 Abstract interface to the upper layer in OS
 Specific for a controller or a class/group of controllers

Devices topology

DCBus Dev1 Dev2 Dev3 DC

Dev1

Dev2

Dev3

Ring

Star DC

Dev1 Dev2

Dev3 Dev4

Tree
DC

Dev1 Dev2

Dev3 Dev4

Hub1

Device handling
1. Application issues an I/O request
2. Language library makes a system call
3. Kernel decides, which device is involved
4. Kernel starts an I/O operation using device

driver
5. Device driver initiates an I/O operation on

a device controller
6. Device does something
7. Device driver checks for a status of the

device controller
8. When data are ready, transfer data from

device to the memory
9. Return to any kernel layer and make other

I/O operation fulfilling the user request
10. Return to the application

User I/O libraries

Device independent
I/O

Device
driver

Device
driver

Device
controller

Device
controller

Device Device

User

Kernel

HW

Device intercommunication
 Polling

 CPU actively checks device status change
 Interrupt

 Device notifies CPU that it needs attention
 CPU interrupts current execution flow
 IRQ handling
 CPU has at least one pin for requesting interrupt

 DMA (Direct Memory Access)
 Transfer data to/from a device without CPU attention
 DMA controller
 Scatter/gather

Interrupt types
 External

 HW source using an IRQ pin
 Masking

 Exception
 Unexpectedly triggered by an instruction
 Trap or fault
 Predefined set by CPU architecture

 Software
 Special instruction
 Can be used for system call mechanism

Interrupt request handling
 What happens, when an interrupt occurs?

 CPU decides the source of the interrupt
 Predefined
 IRQ controller

 CPU gets an address of interrupt handler
 Fixed
 Interrupt table

 Current stream of instructions is interrupted, CPU begins execution of
interrupt handler’s instructions
 Usually between instructions
 Privilege switch usually happens, interrupt handler is part of a kernel

 Interrupt handler saves the CPU state
 Interrupt handler do something useful
 Interrupt handler restores the CPU state
 CPU continues with original instruction stream

CPU

IRQ
controller

INT#INT

Processing
 Program

 A passive set of instruction and data
 Created by a compiler/linker

 Process
 An instance of a program created by OS
 It contains program code and data

 Process address space
 The program is “enlivened” by an activity

 Instructions are executed by CPU
 Owns other resources

 Thread
 One activity in a process
 Stream of instructions executed by CPU
 Unit of kernel scheduling

 Fiber
 Lighter unit of scheduling
 Cooperative scheduling

 Running fiber explicitly yields Heap

Code

Static data
Stack for thread 1

Stack for thread 2

T1
T2

Processing
 Scheduler

 Part of OS
 Uses scheduling algorithms to assign computing resources to scheduling

units
 Multitasking

 Concurrent executions of multiple processes
 Multiprocessing

 Multiple CPUs in one system
 More challenging for the scheduler

 Context
 CPU (and possibly other) state of a scheduling unit

 Registers (including PC)
 Context switch

 Process of storing the context of a scheduling unit, which is now paused, and
restoring the context of another scheduling unit, which resumes its execution

Real-time scheduling
 Real-time scheduling

 RT process has a start time (release time) and a stop time
(deadline)

 Release time – time at which the process must start after
some event occurred

 Deadline – time by which the task must complete
 Hard – no value to continue computation after the deadline
 Soft – the value of late result diminishes with time after the deadline

Unit of scheduling state
 Created

 Awaits admission
 Terminated

 Until parent process waits
for result

 Ready
 Wait for scheduling

 Running
 CPU assigned

 Blocked
 Wait for resources

Created

BlockedReady

Running

Terminated
(zombie)

Multitasking
 Cooperative

 OS does not initiate context switch
 Unit of scheduling must explicitly and voluntarily yield control
 All processes must cooperate
 Scheduling in OS reduced on starting the process and making context switch

after the yield
 Preemptive

 Each running unit of scheduling has assigned a time-slice
 OS needs some external source of interrupt

 Timer
 If the unit of scheduling blocks or is terminated before the time-slice ends,

nothing interesting will happen
 If the unit of scheduling consumes the whole time-slice, it will be interrupted by

the external source, OS will make context switch, and the unit of scheduling is
moved to the READY state

Scheduling
 Objectives

 Maximize CPU utilization
 Fair allocation of CPU
 Maximize throughput

 Number of processes that complete their execution per time unit
 Minimize turnaround time

 Time taken by a process to finish
 Minimize waiting time

 Time a process waits in READY state
 Minimize response time

 Time to response for interactive applications

Scheduling – priority
 Priority

 A number expressing the importance of the process
 Unit of scheduling with greater priority should be scheduled before

unit of scheduling with lower priority
 Static priority

 Assigned at the start of the process
 Users hierarchy or importance

 Dynamic priority
 Adding fairness to the scheduling
 The priority of the process is the sum of a static priority and dynamic priority
 Once in a time the dynamic priority is increased for all READY units of

scheduling
 The dynamic priority is initialized to 0 and is reset to 0 after the unit of

scheduling is scheduled for execution

Scheduling algorithms – non-
preemptive
 First Come, First Serve (FCFS)

 Simple queue, process enters the queue on the
tail, the head process has CPU assigned and
runs, then is removed from the queue

 Shortest Job First
 Maximizes throughput
 Expected job execution time must be known in

advance
 Longest Job first

Scheduling algorithms –
preemptive
 Round Robin

 Like FCFS, there is a queue
 Each unit of scheduling has assigned time-slice
 If the unit of scheduling consumes whole time-

slice or is blocked, it will be assigned to the tail of
the queue

US US USUS CPU

Scheduling algorithms –
preemptive
 Multilevel feedback-queue

 Multiple queues
 Each level has assigned greater time-slice

 If the unit of scheduling consumes the whole time-slice, it will be
assigned to the lower queue

 If the unit of scheduling blocks before consuming the whole time-slice, it
will be assigned to the higher queue

 Schedule head unit of scheduling from the highest non-empty queue

US US USUS CPU

US US USUS

US US USUS

Scheduling algorithms -
preemptive
 Completely fair scheduler (CFS)

 Implemented in Linux kernel
 Processes are in red-black tree

 Indexed by execution time
 Maximum execution time

 Time-slice calculated for each process
 The time waiting to run divided by the total number of processes

 Scheduling algorithm
 The leftmost node is selected (lowest execution time)
 If the process completes its execution, it is removed from scheduling
 If the process reaches its maximum execution time or is somehow

stopped or interrupted, it is reinserted into the tree based on its new
execution time

File
 File

 Collection of related information
 Stored on secondary storage (?)
 Abstract stream of data

 Operations
 Open, close, read, write, seek

 Access
 Sequential, random

 Type
 Extension

 Attributes
 Name, timestamps, size, access, …

File directory
 Directory

 Collection of files
 Efficiency – a file can be located more quickly
 Naming – better navigation for users
 Grouping – logical grouping of files

 Usually represented as a file of a special type
 Store file attributes
 Hierarchy or structure

 Root
 Operations

 Create/delete/rename file/subdirectory
 Search for a name
 List members

File system
 File system

 Controls, how and where data are stored
 Creates an abstraction for files and directories
 Responsibility

 Name translation
 File data location
 Free blocks management

 Bitmap, linked list
 Local file system

 Stored on HDD, SSD, removable media
 FAT, NTFS, ext234, XFS, …

 Network file system
 Access to files/directories over a network stack
 NFS, CIFS/SMB, …

FAT
 File Allocation Table (FAT)

 Simple, old, MS-DOS, many variants used today
 One structure (FAT) for managing free blocks and file data location
 Directory

 Sequence of entries with fixed size and attributes
 Starting cluster, name+ext, size, timestamps, attributes

 Root in fixed position

Directory

a.txt
13

b.txt
3

02 103 04 -15

06 07 58 09

1510 011 012 813

-114 1415 016 017

Boot record

FAT1

Data

FAT2

FAT

Root directory

ext2
 Second extended file system (ext2)

 Simple, old, Linux
 Inode (index node)

 Represents one file/directory
 Directory

 Sequence of entries with fixed structure
 Inode, name

Boot record

Block group 0

Block group 1

Block group N

Superblock
Descriptor

Data bitmap
Inode bitmap

Data block

Inode table

Info

Block 0
Block 1

Block 11
Block 12 (I)

Block 13 (DI)
Block 14 (TI)

Data
block
Data
block

Data
block

Block 0

Block 127

Data
block

Data
block

