Computer Systems

Introduction

Jakub Yaghob

Literature and slides

® Web page and slides

® Books

Silberschatz A.: Operating Systems Concepts,
Willey

Hennessy J.L.. Computer Architecture: A
Quantitative Approach, Morgan Kaufmann

https://www.ksi.mff.cuni.cz/teaching/nswi170-web/
https://www.ksi.mff.cuni.cz/teaching/nswi170-web/

77N
©
Course
® | ectures
® Weekly
¢ Exam

Short written test
Programming task for Arduino

® | abs

® Playing with Arduino with an added shield
® Biweekly, assignments, home assignment

® Upload your assignment to the SIS module Study Group
Roster

® Borrow your Arduino in the library!

Course content

¢ Content
C language
CPU
Architecture
Instruction set
Interrupt, DMA
Memory
Addressing, alignment
Memory hierarchy, cache
Programming languages
Compilation, linking, memory organization
Function calls, parameter passing
Heap, runtime, JIT
Operating systems
Architecture, process, thread, scheduling
Virtual memory
Parallel programming
Synchronization

Computer Systems

C/C++ language

Jakub Yaghob

Features

® Procedural programming language
® Structured, imperative programming
® Recursion

® Static type system

® C constructs map efficiently to machine instructions
Operating systems
HPC
Embedded systems

® Case sensitive, ignore all whitespaces

History

inspired almost superset
=P superset = significant change

BCPL

(Cambridge 1966)

(Bell Labs. 1969)

B

C

(Bell Labs. 1971)

Objective-C
(Cox & Love 1981)

C with classes
(Stroustrup 1979)

K&R C i ‘The C++ programming Ianguage‘

I _ ANSI C | cC++o8
|Object-0rlented Programmgl (ANSI X3J11 1989) |(|SO/IEC 14882 1998)

(Cox 1986)

(Kernigan & Ritchie 1978) (Stroustrup 1985)
Java
(Sun 1995)
C# i 3

C99
Obijective-C 2.0 (ISO/IEC 9899 1999)

(Apple 2006)

(Microsoft 2002) C++03
I(ISO/IEC 14882 2003)

C++TR1
(ISO/IEC 19768 2007)

Cl1
(ISO/IEC 9899 2011)

Example

/* this 1s my best program */
#include <stdio.h>

int Xx; // global variable

int f(int p) { // function
int q = p+x;// local variable
return q;

}

Constants

® Integer numbers
Decimal number

Hexadecimal number

® Floating point number
® String

® Char

® Escape sequence

—LF
- CR
~TAB

—\

— char Oxab

Basic types

® Integer types

¢ Base
char, int

® Modifiers
short, long
signed, unsigned

¢ Auxiliary
size_t
® Floating point types
float, double

® Other types
void, bool

® Implicit conversion
® Conversion rank

Statements

® Compound statement (block)

® Expression statement
expr
® |f statement

expr) stmt
expr) stmt stmt

® Return from a function
expr

Statements - switch

switch (expr) {
case 0:
// something

break;
case 1:

// something else

break;
case 2:
case 3:

// common code for 2 and 3

break;
default:

// do something else otherwise
break;

}

Statements - loops

® While
while (expr) stmt
® Do-while
do stmt while (expr);
® For
for(expri ; exprt ; exprs) stmt
® Jumps
break;
continue;

A
©
Expression
® Arithmetic ® Pointers
+, -, % /,% &, *
® No // ® Assignment
++, - - = += -= *= /= %=, &=,
® Comparison =, N\=
<, <=,3,35, =5, 1= ® Variable/type size
® Bitwise sizeof
K ® Ternary expr
® Logical test ? el : e2

&&, | |, !

Variables

® A named value stored in a memory

® Must be declared before initialization and using
® Variable scope

® Storage class

Array

® Collection of elements each identified by at least one index

® Contiguous area of memory
® Constant size

® Correct alignment

® Row-major order

® Zero based index

4

L T <
=
N
w

2|3 1, 2

0,0 0,1 0,2 1,0 1,1 1,2

1 2 3 4

5

6

Structure

® Collection of fields (members)

® Inner alignment (padding)
® Quter alignment (padding)

struct point2d { int x, y; }
struct data {

char c;

double d;

Int i;

%

12

Remnhants

® Constants
#define C 13
constexpr int C = 13;

® Enumerated type
enum e { RED, BLUE, GREEN };

® Automatic type
® Type inferred from an initialization expression
auto a = 3,

® Importing a module
#include <system.h>

Starting point

® Always function main
® Return value Is an exit code
® Without return O exit code assumed

® Basic version
int main() { }

® Advanced version
int main(int argc, char **argv) { }

Pointer

® Each variable somewhere in memory

® Address

® Avariable holding an address = pointer

Vv 8

PV
pv 4

1234

6666

1234

pVv

Functions, parameter passing |({(©)

-C

® Parameters in C always passed by value
® Output parameters use pointer

pvec(point2d 1in, point2d *out

out ->x in.y
out ->y 1n.X

Reference

® Fixed pointer

Address not reassignable

\Y/ 8
rv V
rv 4

1234

6666

1234

rv

Functions, parameter passing
— C++

® Parameters in C++ passed by value or by

reference
® Output parameters by reference

pvec(point2d in, point2d &out

out . X in.y
out.y in.X

Computer Systems

CPU

Jakub Yaghob

Von Neumann architecture

® Simple, slower

Harvard architecture

® Microcontrollers
® Multiple address spaces

Instruction
Memory

)

CPU

Data
Memory

/10

Real PC architecture

External
Graphics

® Sandy Bridge S

1‘PCI express x16

2133-1066 4
MHz
Clr)u:!\)nlr?gll < T Cache
Mem || Memory Core GEX System
DDRIII 3 BUS ||controller Agent
——
Channel 2 Core
A A
Line out <= Display Iink\l{ \|{4XDMI
S/égll?:in -—> Audio > South Bridge (PCH) > D-sub, HDMI, DVI, Display port
out<==1 Codec
S/PDIF in s> exp
slots
A
BIOS [” PCl express x1 | S
LPC |
Super I/O > _ i i —
- A A A 7.y
2|5 | | USB SATA [SATA gdap
s[> PSI2 ; > |
=| s | | Floppy DVD Hard v
g 'g Drive ||keybrd/ LielisE Dri Disk
alol mouse rve Is LAN

CPU

® Architecture
HW
ISA
® "Simple" machine
Executes instructions
Instruction — simple command

Instructions - motivation

® How can we execute the following code?
if(a<3) b = 4; else ¢ = a << 2;
for(int 1=0;1<5;++1) a[1i] = 1;

int f(int p) { return p+1; }
void g() { auto r = f(42); }

Instruction classes

® | oad instructions
® Store instructions
® Move Instruction
® Arithmetic and logic instructions
® Jumps
Unconditional x conditional
Direct x indirect X relative

® Call, return
o

©)
Registers
® Types

General, integer, floating point, address, branch,
flags, predicate, application, system, vector, ...

® Naming
Direct x stack
® Aliasing

Registers — example 32-bit x86

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

AX

AH

AL

BX

BH

BL

CX

CH

CL

DX

DH

DL

Si

Dl

BP

SP

CS

DS

ES

SS

FS

GS
EFLAGS
EIP

FLAGS

Registers — example 1A-64

APPLICATION REGISTER SET

Creneral registers

63 g 1ats
£y [i
Zry |
g
i
hanked| 5"]"l_]
l'E'::l'
i i
iz |
Eh27]

Flmﬂmn -point registers Predicates

fiy
iy
firg

fry)
fiz

frya7

i

+(1.0

+1.1)

Pry
P

Prz ||

Pris|]
Phya] |

Prg[]

1]

Branch registers

63

]

by

b 1

h-l'*z

brq

1’:-3

Instruction Pointer
0

Performance Monitor

Processor ldentifiers

cpuidy
cpuid,

cpuid,,

63

]

pmdy
prd,

prdy,

User Mask
5 il

[1

Data registers
3

a

(O

Application registers

aru
dary

arm
3r|7
3r|3

arm
araq
3r15
arzﬁ
a@rag
arzg
E.'I.'Ip
E.'I.':.m
ﬂrﬂz
arn,!;
3r4,;,
aryq
ETH
3r|55
3r,5,5

aru-

43

i

KR

KRY

RSC

BSP

BEPSTORE

RhlmT

FCR

EFLAC

5D

S50

CFLG

FSR

FIR

FDRE

!
COV

UNAT

FPSR

ITC

FES

LT

EC

MIPS - simple assembler

® Execution environment

32-bit reqgisters r0-r31
r0 is always 0, writes are ignored
r31 is a link register for the Instruction

No stack
No flags
PC register

MIPS - register aliases

$r0

$rl
$r2-$r3
$ra-$r7
$r8-$r15
$r16-$r23
$r24-$r25
$r26-$r27
$r28

$r29

$r30

$r31

$zero
$at
$v0-$v1
$a0-%$a3
$tO-$t7
$s0-$s7
$t8-$t9
$k0-$k1
$gp
$sp

$fp

$ra

0

Assembler temporary
Return value
Function arguments
Temporaries

Saved temporaries
Temporaries

Kernel registers — DO NOT USE
Global pointer

Stack pointer

Frame pointer

Return address

N/A
No
No
No
No
Yes
No
N/A
Yes
Yes
Yes
Yes

MIPS - Iinstructions

® Arithmetic
® add $rd, $rs, $rt
R[rd] = R[rs]+R[rt]
¢ addi $rd, $rs,imm16
R[rd] = R[rs]+signext(imm16)
® sub $rd, $rs, $rt
® subi $rd, $rs, imm16

ISA comparison

MIPS X86

ADD $t1,$t1,$to0 ADD eax, ebx
ADDI $t1,$t1,1 ADD eax, 1
ADD $t2,$to,$t1 MOV eax, ebx

ADD eax, ecx

MIPS - Iinstructions

® Logic operations
¢ and/or/xor/nor $rd, $rs, $rt

® andi/ori/xori $rd, $rs, imml6
R[rd] = R[rs] and/or/xor zeroext(imm16)

® No not instruction, use nor $rd, $rs, $rs

® Shifts

® sll/slr $rd, $rs, shamt
R[rd] = R[rs] <</ >> shamt

® sra $rd, $rs, shamt

ISA comparison

MIPS
NOR $t1,$t2

SLL $t1,%t1,3

X86

MOV eaXx, ebx
NOT eax

SHL eax,3

MIPS - Iinstructions

® Memory access

lw $rd, imm16($rs)

R[rd] = M[R[rs] + signext32(imm16)]
sw $rt,imm16($rs)

M[R][rs] + signext32(imm16)] = R[rt]
b $rd, imm16($rs)

R[rd] = signext32(M[R]rs] + signext32(imm16)])
lbu $rd, imm16($rs)

R[rd] = zeroext32(M[R][rs] + signext32(imm16)])
sb $rt, imm16($rs)

M[R][rs] + signext32(imm16)] = R[rt]

® Moves

1li $rd, imm32
R[rd] = imm32

® move $rd, $rs

R[rd] = R[rs]

ISA comparison

MIPS

LW $t1,1234($t0)
SW $t1,1234($t0)
LB $t1,1234($t0)
LI $t1,5678
MOVE $t1,$t0

X86

MOV eaXx, [ebx+1234]
MOV [ebx+1234], eax
MOV al, [ebx+1234]
MOV eax, 5678

MOV eaX, ebx

O

MIPS - Iinstructions

® Jumps
® jJ addr
PC = addr
® jr $rs
PC = RJrs]
® jal addr
R[31] = PC+4; PC = addr

ISA comparison

MIPS

J label
JR $ra

JAL fnc

X86

JMP labell
JMP [ebx]

CALL fnc

MIPS - Iinstructions

® Conditional jumps
® beq S$rs, $rt,addr
If R[rs]=R[rt] then PC=addr else PC=PC+4
® bne $rs, $rt,addr
® Testing
® slt $rd, $rs, $rt
If R[rs]<R][rt] then R[rd] = 1 else R[rd] =0
® sltu $rd, $rs, $rt
Unsigned version
® slti $rd, $rs,imml6
If R[rs]<signext(imm16) then R[rd] = 1 else R[rd] =0
® sltiu $rd, $rs,i1mml6
If R[rs]<zeroext(imml6) then R[rd] = 1 else R[rd] =0

ISA comparison

MIPS
BEQ $t0,$t1, label

SLT $t2,%$t1, $to
BNE $t2,$zero, label

SLTI $t2,%$t1,5
BNE $t2,$zero, label

X86

CMP eaXx, ebx
JZ 1label

CMP eaXx, ebx
JL label

CMP eax,5
JL label

Flags

® Only used by some ISA
® Control execution
® Check status of the last instruction
® Usual flags

Z — zero flag
S —sign flag
C — carry flag
0jo|o[ojofo|o|ojo|o[SIFFHBIEF 0E| B RS/ AN 0F 0|13
Reserved flags System flags Arithmetic flags

CPU

® Architecture
Memory controller
Cache hierarchy
Core

Registers
Types

Logical processor
Hyper threading

Instructions

Instruction

® Simple command to the CPU
® Encoding

® Assembler

® Operands

® Instruction flow
PC

® Stack?
SP

ISA

® |nstruction set architecture
Abstract model of CPU

® Classification
CISC — Complex Instruction Set Computer
RISC — Reduced Instruction Set Computer
VLIW — Very Long Instruction Word
EPIC — Explicitly Parallel Instruction Computer
® Orthogonality
Accumulator

® | pad-Execute-Store

CPU - simplified scheme

T0 | T4 T1 | T5 T2 | T6 13 | T7
EU EU EU EU
L1l L1l L1l L1l
L1D L1D L1D L1D
L2 L2 L2 L2

COREO CORE 1 CORE 2 CORE 3

L3/LLC

Package

Real CPU scheme - package

® |Intel Coffee Lake

Gen9.5

Core

L3$ Slice

L3$ Slice

Core

Core

L3$ Slice

L3$ Slice

Core

20
5
Q@

Core

L3$ Slice

L3$ Slice

Core

System
Agent

=
Display <>

Controller

PCle

il

eDRAM <—>
Controller <——>

(optional)

Memory <>
Controller <.——>

Real CPU
scheme - cor

Front End

Branch
Predictor
(BFU)

MicroCode
Sequencer
ROM
(MS ROM)

(SE@D) s3sng weq Tommoy

Decoded Stream Buffer (DSB)
{uOP Cache)
{1 5k pOPs; 3-Way)
(64 B window)

Instruction
Cache Tag L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
Tag TLB
16 Bytes/cycle
Instruction Fetch & PreDecode
(16 B window)
MOP MOP MOP MOP MOP MOP
Instruction Queue
’ (50, 2x25 entries)
MoP MOP MoP Mop MOP
5-Way Decode
Complex Simple Simple Simple Simple
Decoder || Decoder Decoder || Decoder || Decoder
1-4 wOP: WOP LOP LOP wOP Stack
Engine
40Ps (5E)
5 pOPs [P) [Fsar | [Reuwr]
6 pOPs
N MUX V4

Loop Stream
Detector (LSD)

Allocation Queus (IDQ) (128, 2x64 pOPs)

/

~

apAdgy9

Memory Subsystem

a poOP pOP pOP pOP pOP poOP Branch Order Buffer
l Register Alias Table (RAT) “Op, (BOB) (48-entry)
Load -
=3 ‘ RenF?;?)?diﬁgSf?;tggfg:rri‘:gem Ones Idioms H Zeraing Idioms |
£ uoP uoP pOP HopP uop uoP uoP pOP
F
" y Scheduler " <
Integer Physical Register File : . Vector Physical Register File
Tnt Unified Reservation Station (RS} N
]t (180 Registers) (97 entries) (168 Registers)
[Poi0 | | Poii | [Poi5 | | Pori6 | | Poi2 | [Pona | | Pod | | Pori7 | c §'_
uop uopP uop uoP uor uop HOP uoP A
& @O
NT ALU NT ALU INT ALU INTALU | [AGU | [AcU_ | © o
NTDIV__|| INTMUL || Vect Shuffie c|l =8
INT Vect ALU [INT Vect ALU | [INT Vect ALU w 7]
INT Vect MUL | [INT Vect MUL LEA =
FP FMA FP FMA 2seviteyl
AES Bit Scan
[Vect String | EUs
FF DIV
Branch
Execution Englne Store Buffer & Forwarding
(56 entries) g
[v2]
328icycle \ 3..
-
8 o
Data TLB]
Load Buffer § L1 Data Cache Q
(72 entries) | = 32KiB 8-Way
g Line Fill Buffers (LFB)
(10 entries)

)

32B/cycle

/ To L3

CPU architecture - pipeline

® Current CPU
¢ 14-19 stages

IF D | EX [MEM
IF ID | EX WB
L IF ID MEM| WB
IF EX MEM| WB
D | EX [MEM| WB

CPU architecture — superscalar

processor

® Current CPU
5-way, asymmetric

IF ID | EX MEM| WB
IF ID | EX MEM| WB
; IF ID | EX IMEM WB
"t IF ID | EX [MEM WB
- IF ID | EX MEM| WB
IF ID | EX MEM| WB
IF ID EX [MEM| WB
IF ID EX [MEM| WB
IF ID | EX [MEM| WB
IF ID | EX [MEM| WB

CPU architecture - out-of-
order execution

Decoder

HOPs

I/V ALU I/V ALU I/V ALU | ALU AGU AGU AGU AGU
I/V MUL I’V MUL | |Vec Shuff | Logic Load Load Store
I/V Logic | | I/V Logic F ADD Branch

String Bit scan Comp Int

F FMA F FMA

AES

SQRT

b Reorder buffer
Branch

Computer Systems

Memory

Jakub Yaghob

Memory

® Definition
Each memory organized into memory cells — bits
Bits are grouped into words of fixed length
1, 2,4, 8, 16, 32, 64, and 128 bits
Each word can be accessed by a binary address

N bits
We can store 2N words in the memory

Today, the 8-bit word is used exclusively
Byte

Memory — address space

Memory - physical view

® 2D array
® Row x column
® Select, access, deselect row
® Timing
CAS (tCL) — Column Access Strobe
tRCD — Row Address to Column Address Delay

tRP — Row Precharge

RAS (tRAS) — Row Active Time

C Row (14 bits) Bank (3 bits)| Column(11 bits)

Byte in bus (3 bits)

Data representation - integer
numbers

® Unsigned numbers
Simple binary representation of a number
Usual sizes
1, 2, 4, 8 bytes
Represented range
[0; 2%-1]
® Signed numbers
Two’s complement
Bitwise negation + 1
One 0
Compatible with unsigned arithmetic

Asymmetric range
[_2N-1 , 2N-1_ 1]

Data representation - floating (%)
point numbers

®* |EEE 754

® Hidden bit convention
® Memory representation for SP, DP
® Use the smallest representable exponent
Hide leading bit of significand, it is always 1
® Exponent
® Bias (FP=127, DP=1023)
® Special values

® Value :
Sign
Single Precision
3130 23 22 D Floating Point
Sign
Double Precision
Floating Point

63 62 52 51 0

Data representation - @

endianess

® How to store multi-byte numbers?

® Big endian oy [FEDETGEE
° MSB first, LSB last clod |
®* PowerPC ‘1; 2g|
® Little endian o EE: R—
® LSB first, MSB |ast o
® Intel ofab;??;n Memory
® Example BN
® Store 32-bit number 0XOAOBOCOD e
ewam T

Data alignment — inner
padding

® Modern CPUs require data in memory aligned to

their size

® E.g. integer (4B) must have address aligned to 4

struct dem { a1
char c;

double d;
int 1;

8B

A+9

};

A+8

A+16

A+20

1B

/B

8B

4B

Data alignment - outer

padding

dem arr[2];

arr[o]

— arr[1]

A+8

A+16

A+24

A+32

A+40

A+48

1B
/B

8B

4B

4B
1B

/B
8B

4B
4B

_ arr[o]

— arr[1]

Memory allocation

® Task

Locate a block of unused memory of sufficient size
Allocate portions from a large pool of memory
Heap, memory arena/pool
® Lifecycle

Allocate a block
Different strategies, allocators

Use the block

Free the block
Explicitly, garbage collector

Fragmentation

® |Internal
Allocated more memory than needed in a block

® External

Free memory separated into small blocks and
Interspersed by allocated memory

requested

|

allocated

Dynamic memory allocation

® Contiguous allocation of variable size

® Free blocks evidence
Linked list

Bitmap
Each bit represents a block of a fixed size

Allocation algorithms

® First fit
Start from the beginning
Find the first free space big enough to accommodate required block size
Pros: fast, simple; Cons: can divide larger blocks

® Next fit
Like the first fit, but starts from the last position
Pros: fast, doesn’t make fragmentation on the start of the heap
® Best fit
Start from the beginning, find the smallest space big enough
Pros: keeps large blocks; Cons: slower, creates many tiny blocks
® Worst fit

Start from the beginning, find the largest space
Cons: divides large blocks

Buddy memory allocation

® Blocks of 2N size
Address aligned to 2N

® Find the smallest 2N block fitting the required size
“List” of free blocks lists with fixed sizes 2N

® |f there are no small blocks, create them dividing larger
blocks

Buddies
Find the buddy address by XORing my address with the block size

® Merge blocks back when both buddies are free
® Significant internal fragmentation

Buddy memory allocation

Req 200B
64 —
A:1024,S5:256
256 " Ar1280,S:2561
V

512 » A:1024,S:512

1k

2k

4k

8k

16k » A:16384,S:16k

Computer memory hierarchy

Size

Power on

Power off

Speed
Price

ﬂk

Cache

® HW or even SW
A structure holding data
Future requests for that data can be served faster
Generic cache operation
Make a request for data

Are data placed in the cache?
If they are, return them, otherwise do a slow calculation/access

® Cache in CPU

Hides memory latency
Based on locality of reference

CPU cache operation
Make a request for data in the memory

Are data placed in the cache? Look in all levels of cache in the CPU from the fastest L1 to
the slowest LLC

If they are, return them to the execution unit in a CPU core, otherwise do a full memory
access

Cache terminology

® Cache line/entry

Caches are organized in lines
Usual size is 64B

® Cache hit
Request served from the cache
Success rate around 97%

® Cache miss
Data not found in a cache hierarchy, do a full memory access
Load data from the memory to a cache line
Select either a free cache line or select a victim cache line
Store modified cache lines back to the memory
® Cache line state
MESI

Associative memory

® Associative memory
® Very fast

® Content based
addressing

® Used in CPU caches 64

21

key value

114

138

RAM

Cache
line
number

NUMA

® Multiprocessors

® SMP — Symmetric multiprocessing
® NUMA — Non-uniform memory access

CPU1

CPU2

i

U

System bus

<

i

)

F

F

CPU1 CPU3
cpu2 K> cpua

o

Address space

Computer Systems

Programming languages

Jakub Yaghob

Naive view of a compiler

Source code
in my favorite
programming
language

The compiler

Executable
for my
favorite
operating
system

©)
Formal view of a compiler =

® From slides of the course Compiler Principles
Let’'s have an input language L, generated by a grammar G,

Let's have an output language L, generated by a grammar
G, Or accepted by an automaton A,

The compiler is a mapping L., - L_, where for all w,_ in L. exist
w,, In L. The mapping does not exist for w,, notin L

out out"

¢ Don’t worry!
You have to visit Automata and Grammars (NTINO71) course
(obligatory) and then Compiler Principles (NSWI098) course
(elective)

Naive view of a grammar

® Formal description of a language
Rules
Lexical elements

iteration-statement:
while (expression) statement
do statement while (expression) ;

for (expression,, ; expression,, ; expression,,) statement

opt 1 opt I

More practical view of a

translation

Compiler

&

Linker

<— Assembler

h————

Memory organization

® Memory organization during procedural
program execution

Stack

Stack for thread 1

Stack for thread n

T hew

Linker/librarian/loader

©N
* Library

A collection of compiled source modules and other resources
Static, dynamic

® Linking
“Gluing” the results of the different translations and libraries
together into one executable for given OS
Relocations
Positions independent code

® Loader
Part of OS, loads the executable into memory
Relocation again

Linking

CC

-
-

CC

__CodeB |
H/B.O/A Constants.B

Code.A

Constants.A

Code.P
Constants.P

Code.Q
Constants.Q

L | swtic darag |

IENY

Code.A

__CodeB |

Code.Q

Constants.A

Constants.B

Constants.Q

Run-time

® Static language support
Compiler
Library interface
Header files

® Dynamic language support
Run-time program environment
Storage organization
Memory content before execution
Constructors and destructors of global objects
Libraries
Calling convention

Function call — activation
record (stack frame)

Return value

Actual parameters

Return address

Control link

Saved machine status

Local data

Temporaries

® Saved machine status
Return address to the code
Registers

® Control link
Activation record of the caller

Calling convention

® Calling convention
Public name mangling
Call/return sequence for functions and procedures
Housekeeping responsibility
Parameter passing
Registers, stack
Order of passed parameters
Return value
Registers, stacks
Registers role
Parameter passing, scratch, preserved

Public name mangling

® Real meaning
mangle
mandlovat
rozsekat, roztrhat, rozbit, rozdrtit, tézce posSkodit, potlouci, pohmozditi
pren. pokazit, znetvorit, k nepoznani zmenit, prekroutit, zkomolit
® Examples:

MSVC IA-32 C __ cdecl

MSVC IA-32 C __ fastcall

MSVC IA-32 C __ stdcall
MSVC IA-32 C++

GCCIA-32C
GCC IA-32 C++ t

MSVC |A-64 C
MSVC IA-64 C++

\ly

Calllreturn seguence

Parameters, return value
Caller’s
activation Links, machine state
record

Caller’s
Local and temporal data responsibility
Parameters, return value
Callee’s
activation Links, machine state
record b Callee’s

responsibility
Local and temporal data

Parameter passing

® Call by value
® Actual parameter is evaluated and the value is passed
® Input parameters, the parameter is like a local variable
° C

® Call by reference

® The caller passes a pointer to the variable 1234
® Input/output parameters
¢ &inC++

2345

BigV fnc(int v, int &rv);
BigV r = fnc(a, b);

(@)
1
00

BigV

rv=2345

v=5

RA

Variables

® Named memory holding a value
® Has a type

® Storage
Static data
Global variables in C
Stack
Local variables in C
Heap
Dynamic memory in C/C#
Dictionary
In Python
Not a storage, it is a dynamic structure

Heap

® Storage for dynamic memory

® Allocate
Use all features from dynamic memory allocation

Free blocks evidence
Allocation algorithms

" Extremely simple and fast incremental allocation
® Deallocate
Explicit action in some languages
C, C++
Automatic deallocation by garbage collection

Remove burden and errors
Works only with good knowledge of live objects and references

Garbage collection

® Automatic removal of unused memory blocks

¢ Advantages

No dangling pointers, no double free, no memory leaks, allows heap
consolidation and fast allocation

¢ Disadvantages
Performance impact, even execution stall, unprelglictable behavior

® GC strategies
® Tracing
Reachable objects from live objects

® Reference counting
Problems with cycles, space and speed overhead

® Advanced versions for languages with heavy use

Virtual machine and containers

® VM = Emulation of a computer system

Full virtualization
Substitute for a real machine, allows execution of entire OS
Hypervisor shares real HW, native execution, virtual HW
Isolation, encapsulation, compatibility

Process VM
Runs as an application inside OS

Provides platform-independent programming environment
" Abstract machine (instructions, memory, registers, ...)
" Java VM, .NET CLR

Slow execution
= JIT, AOT

® Container = OS-level virtualization
OS kernel allows existence of multiple isolated user space instances

O

Physical machine

® Physical HW

® CPU, RAM, disks,
Application /0O

® Underutilized HW
* SW

® Single active OS

® OS controls HW

Virtual machine

® HW-level abstraction
® Virtual HW: CPU, RAM,
disks, 1/O
® Virtualization SW
® Decouples HW and OS

® Multiplexes physical HW
across multiple guest VMs

¢ Strong isolation between
VMSs

® Manages physical
resources, improves
utilization

Portability

® Source code portability

CPU architecture
Different type sizes
" C,C++
Fixed type sizes
" C#, Java
Compiler
Different language “flavors”
* C++ - gcc, msvc, clang, ...
Use only syntax and library from a language standard

OS
Different system/library calls
* Linux, Windows

Sometimes easy
" BSD sockets

Computer Systems

Operating systems

Jakub Yaghob

O

Operating system - role

® Abstract machine
® Presented by kernel

Application API
System calls

¢ Hide HW complexity

® Resource manager

¢ All HW managed by
OS

¢ Sharing HW among
applications

CPU modes

® User mode
Avallable to all application
Limited or no access to some resources
Registers, instructions
® Kernel (system) mode
More privileged
Used by OS or by only part of OS
Full access to all resources

Architecture — monolithic

® Monolithic systems
® Big mess — no structure
¢ “Early days”
Linux

® Collection of procedures ;Jf(')“; Q Q Q

Each one can call another one
® No information hiding
® Efficient use of resources, efficient code
® Originally no extensibility

Now able to load modules dynamically

Service
proc

Architecture - layered

® Evolution of monolithic system
Organized into hierarchy of layers

Layer n+1 uses exclusively services supported by
layer n

Easier to extend and evolve

Architecture — microkernel

® Microkernel architecture
® Move as much as possible from the kernel space

to the user space

Communication between user modules

Message passing
Client/server

Extendable
Secure
Reliable

Svc 1l

Svc 2

App

N

Linux kernel architecture

Linux kernel map

functions g
system processing memory storage networking

Iavers kamelf karnal mmy 5/ natf
system interfaces processes memeory access files & directories sockets access
linus syscalls.h system files PR accCess

user space :£|mmw I z::, ey YR S 5,.:5_1::;* :::_‘.T.:mp: sysosen ?yi__ss::ﬂcm

= i :_clane sys_read -

interfaces = wl_m “MJ_ porocselimaps do_path leokup =5 -

coew man
3y5_rohost syseTnit_module SYS.nanosleep

menpory

memory disk controllers network controllers

human
interface
HI char devices
Kmsg

sys_syslog

usar peripherals

Windows kernel archi

Application |l Application

ure

Work-
station
service

Server
service

Security

Integral subsystems

.| Win32

POSIX

05/2

—Y

Environment subsystems

User mode

Executive Services

I/0

Manager|| monitor | [Manager

Security | PC

Reference

Virtual
Memory

i

Process
Manager]

PnP

Manager

Power
Manager

Window
Manager

Object Manager

Executive

Kernel mode drivers

Hardware Abstraction Layer (HAL)

Kernel mode

Hardware

Devices

® Terminology

Device
“a thing made for a particular purpose”

Device controller

Handles “electrically” connected devices
" Signals on a “wire”, A/D converters

Devices connected in a topology
Device driver
SW component, part of OS
Abstract interface to the upper layer in OS
Specific for a controller or a class/group of controllers

Devices topology

Bus DC ‘ ‘ ‘ Ring :I DC ;

Tree

Device handling

Application issues an I/O request
Language library makes a system call
Kernel decides, which device is involved

Kernel starts an I/O operation using device
driver

5. Device driver initiates an 1/O operation on
a device controller

6. Device does something

7. Device driver checks for a status of the
device controller

8. When data are ready, transfer data from
device to the memory

9. Return to any kernel layer and make other
I/O operation fulfilling the user request

10. Return to the application

e

User I/O libraries

r 3

User

- o

Device Device
controller | | controller
Device

HW

Device intercommunication

® Polling
CPU actively checks device status change

® Interrupt
Device notifies CPU that it needs attention
CPU interrupts current execution flow
IRQ handling
CPU has at least one pin for requesting interrupt
® DMA (Direct Memory Access)
Transfer data to/from a device without CPU attention
DMA controller
Scatter/gather

Interrupt types

® External
HW source using an IRQ pin
Masking
® Exception
Unexpectedly triggered by an instruction
Trap or fault
Predefined set by CPU architecture

® Software
Special instruction
Can be used for system call mechanism

Interrupt request handling

® What happens, when an interrupt occurs?

® CPU decides the source of the interrupt
Predefined
IRQ controller

® CPU gets an address of interrupt handler #INT

Fixed CPU
Interrupt table

® Current stream of instructions is interrupted, CPU begins execution of
interrupt handler’s instructions
Usually between instructions
Privilege switch usually happens, interrupt handler is part of a kernel

® Interrupt handler saves the CPU state

¢ Interrupt handler do something useful

® Interrupt handler restores the CPU state

® CPU continues with original instruction stream

INT

Processing

® Program
¢ A passive set of instruction and data
¢ Created by a compiler/linker

® Process
¢ An instance of a program created by OS
¢ It contains program code and data
Process address space
® The program is “enlivened” by an activity
Instructions are executed by CPU
¢ Owns other resources

® Thread
® One activity in a process
¢ Stream of instructions executed by CPU
¢ Unit of kernel scheduling
® Fiber
¢ Lighter unit of scheduling

¢ Cooperative scheduling
Running fiber explicitly yields

Code
T2

Static data

Stack for thread 1

]
Stack for thread 2

y

Processing

® Scheduler
Part of OS
Uses scheduling algorithms to assign computing resources to scheduling

units
® Multitasking
Concurrent executions of multiple processes

® Multiprocessing
Multiple CPUs in one system
More challenging for the scheduler

® Context
CPU (and possibly other) state of a scheduling unit
Registers (including PC)
® Context switch

Process of storing the context of a scheduling unit, which is now paused, and
restoring the context of another scheduling unit, which resumes its execution

Real-time scheduling

® Real-time scheduling

® RT process has a start time (release time) and a stop time
(deadline)

® Release time — time at which the process must start after
some event occurred

® Deadline — time by which the task must complete
Hard — no value to continue computation after the deadline
Soft — the value of late result diminishes with time after the deadline

~

Unit of scheduling state

® Created
® Awaits admission

® Terminated

¢ Until parent process walits
for result

® Ready

¢ Wait for scheduling
® Running

¢ CPU assigned

® Blocked < Blocked
® Walit for resources

Multitasking

® Cooperative
OS does not initiate context switch
Unit of scheduling must explicitly and voluntarily yield control
All processes must cooperate
Scheduling in OS reduced on starting the process and making context switch
after the yield
® Preemptive
Each running unit of scheduling has assigned a time-slice

OS needs some external source of interrupt

Timer
If the unit of scheduling blocks or is terminated before the time-slice ends,
nothing interesting will happen
If the unit of scheduling consumes the whole time-slice, it will be interrupted by
the external source, OS will make context switch, and the unit of scheduling is
moved to the READY state

Scheduling

® Objectives
Maximize CPU utilization
Fair allocation of CPU
Maximize throughput
Number of processes that complete their execution per time unit
Minimize turnaround time
Time taken by a process to finish
Minimize waiting time
Time a process waits in READY state

Minimize response time
Time to response for interactive applications

Scheduling - priority

® Priority
A number expressing the importance of the process
Unit of scheduling with greater priority should be scheduled before
unit of scheduling with lower priority
Static priority
Assigned at the start of the process
" Users hierarchy or importance
Dynamic priority
Adding fairness to the scheduling
The priority of the process is the sum of a static priority and dynamic priority

Once in a time the dynamic priority is increased for all READY units of
scheduling

The dynamic priority is initialized to 0 and is reset to 0 after the unit of
scheduling is scheduled for execution

Scheduling algorithms - non- (@

preemptive

® First Come, First Serve (FCFS)

Simple queue, process enters the queue on the
tail, the head process has CPU assigned and
runs, then is removed from the queue

® Shortest Job First
Maximizes throughput

Expected job execution time must be known in
advance

® Longest Job first

Scheduling algorithms - (©
preemptive

® Round Robin
® Like FCFS, there is a queue
® Each unit of scheduling has assigned time-slice

® If the unit of scheduling consumes whole time-
slice or is blocked, it will be assigned to the tail of

the queue

W US || US| Us || US -

Scheduling algorithms - (@
preemptive

® Multilevel feedback-queue

Multiple queues
Each level has assigned greater time-slice

If the unit of scheduling consumes the whole time-slice, it will be
assigned to the lower queue

If the unit of scheduling blocks before consuming the whole time-slice, it
will be assigned to the higher queue

Schedule head unit of scheduling from the highest non-empty queue

+ us || Us | - us || Us
P

I — US || US |-

E—
™ US ||US | —— US || US [~

Scheduling algorithms - (@
preemptive

® Completely fair scheduler (CFS)
Implemented in Linux kernel

Processes are in red-black tree
Indexed by execution time

Maximum execution time
Time-slice calculated for each process
The time waiting to run divided by the total number of processes

Scheduling algorithm
The leftmost node is selected (lowest execution time)
If the process completes its execution, it is removed from scheduling

If the process reaches its maximum execution time or is somehow
stopped or interrupted, it is reinserted into the tree based on its new
execution time

File

® File
Collection of related information
Stored on secondary storage (?)
Abstract stream of data
Operations
Open, close, read, write, seek

Access

Sequential, random
Type

Extension
Attributes

Name, timestamps, size, access, ...

File directory

® Directory
Collection of files
Efficiency — a file can be located more quickly
Naming — better navigation for users
Grouping — logical grouping of files
Usually represented as a file of a special type
Store file attributes

Hierarchy or structure
Root
Operations
Create/delete/rename file/subdirectory
Search for a name
List members

File system

® File system
Controls, how and where data are stored
Creates an abstraction for files and directories
Responsibility
Name translation

File data location
Free blocks management
" Bitmap, linked list
Local file system
Stored on HDD, SSD, removable media
FAT, NTFS, ext234, XFS, ...

Network file system

Access to files/directories over a network stack
NFS, CIFS/SMB, ...

FAT

® File Allocation Table (FAT)
® Simple, old, MS-DOS, many variants used today
® One structure (FAT) for managing free blocks and file data location

® Directory

Sequence of entries with fixed size and attributes
" Starting cluster, name+ext, size, timestamps, attributes

Root in fixed position

Directory FAT _

| FAT1

a.ixt

FAT2

b.txt

ext2

® Second extended file system (ext2)
¢ Simple, old, Linux
® Inode (index node)
Represents one file/directory

® Directory
Sequence of entries with fixed structure
"
|
Block group O

Block group 1 |

Block group N

Data
block

Data
block

Data
block

Data
1 block

Data
' block

