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October 5, 2020

NAIL062 Propositional & Predicate Logic Lecture 1 October 5, 2020 1 / 24



Overview

1 Introduction

2 Propositional Logic
Basic syntax
Basic semantics
Normal forms

NAIL062 Propositional & Predicate Logic Lecture 1 October 5, 2020 2 / 24



What is logic? [Answer]

Logic in mathematics:

formal methods, go beyond capabilities of intuition

automated theorem proving (and formal verification)

Logic in computer science:

theoretical foundations (Turing machines, limits of computation)

complexity theory: Boolean functions and circuits, decision trees, . . .

artificial intelligence: automated inference, resolution, multiagent
systems & modal logic, concurrent systems & temporal logic,. . .

Logic in computer engineering & business applications:

formal speficication & verification, automated testing (hardware &
software)

SAT and SMT solving, constraint logic programming, declarative
programming, functional programming

database theory (Structures, Datalog), . . .
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Overview

logic for computer science

+ resolution in predicate logic, unification, “background” of Prolog
- less of model theory, ...

tableau method instead of Hilbert-style calculi

+ algorithmically more intuitive, (sometimes) more elegant proofs
- uncovered (much) in usual textbooks, restriction to countable

languages

propositional logic entirely before predicate logic

+ ideal “playground” for comprehension of foundational concepts
- slower pace of lectures at the beginning

undecidability and incompleteness less formally

+ emphasis on principles
- a risk of inaccuracy
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History 1
Aristotle (384-322 B.C.E.) - theory of syllogistic, e.g.

from ‘no Q is R’ and ‘every P is Q’ infer ‘no P is R’.

Euclid: Elements (about 330 B.C.E.) - axiomatic approach to
geometry

“There is at most one line that can be drawn parallel to another

given one through an external point.” (5th postulate)

Descartes: Geometry (1637) - algebraic approach to geometry

Leibniz - dream of “lingua characteristica, calculus ratiocinator”
(1679-90)

De Morgan - introduction of propositional connectives (1847)

¬(p ∨ q)↔ ¬p ∧ ¬q
¬(p ∧ q)↔ ¬p ∨ ¬q

Boole - propositional functions, algebra of logic (1847)

Schröder - semantics of predicate logic, concept of a model
(1890-1905)
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History 2

Cantor - intuitive set theory (1878), e.g. the comprehension principle

“For every property ϕ(x) there exists a set {x | ϕ(x)}.”

Frege - first formal system with quantifiers and relations, concept of

proofs based on inference, axiomatic set theory (1879, 1884)

Russel - Frege’s set theory is contradictory (1903)

For a set a = {x | ¬(x ∈ x)} is a ∈ a ?

Russel, Whitehead - theory of types (1910-13)

Zermelo (1908), Fraenkel (1922) - standard set theory ZFC , e.g.

“For every property ϕ(x) and a set y there is a set {x ∈ y | ϕ(x)}.”

Bernays (1937), Gödel (1940) - set theory based on classes, e.g.

“For every property of sets ϕ(x) there exists a class {x | ϕ(x)}.”
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History 3

Hilbert - complete axiomatizaton of Euclidean geometry (1899),
formalism - strict divorce from the intended meanings

“It could be shown that all of mathematics follows from a correctly

chosen finite system of axioms.”

Post - completeness of propositional logic (Gödel: predicate)

Gödel - incompleteness theorems (1931)

Kleene, Post, Church, Turing - formalizations of algorithm,

an existence of algorithmically undecidable problems (1936)

Robinson - resolution method (1965)

Kowalski; Colmerauer, Roussel - Prolog (1972), logic programming

NAIL062 Propositional & Predicate Logic Lecture 1 October 5, 2020 7 / 24



Levels of language
We will formalize the notion of proof and validity of mathematical
statements.

We distinguish different levels of logic according to the means of language,

in particular to which level of quantification is admitted.

propositional connectives propositional logic

This allows to form combined propositions from the basic ones.

variables for objects, symbols for relations and functions, quantifiers
first-order logic

This allows to form statements on objects, their properties and
relations.

The (standard) set theory is also described by a first-order language.

In higher-order languages we have, in addition,

variables for sets of objects (also relations, functions) second-order

variables for sets of sets of objects, etc. third-order

NAIL062 Propositional & Predicate Logic Lecture 1 October 5, 2020 8 / 24



Examples of statements of various orders

“If it will not rain, we will not get wet. And if it will rain, we will get
wet,

but then we will get dry on the sun.” proposition

(¬r → ¬w) ∧ (r → (w ∧ d))

“There exists the smallest element.” first-order

∃x ∀y (x ≤ y)

The axiom of induction. second-order

∀X ((X (0) ∧ ∀y(X (y)→ X (y + 1)))→ ∀y X (y))

“Every union of open sets is an open set.” third-order

∀X∀Y ((∀X (X (X )→ O(X )) ∧ ∀z(Y (z)↔ ∃X (X (X ) ∧ X (z))))→ O(Y ))
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Syntax and semantics

We will consider relations between syntax and semantics:

syntax: language, rules for formation of formulas, interference rules,

formal proof system, proof, provability,

semantics: interpreted meaning, structures, models, satisfiability,
validity.

We will introduce the notion of proof as a well-defined syntactical object.

A formal proof system is

sound, if every provable formula is valid,

complete, if every valid formula is provable.

We will show that predicate logic (first-order logic) has formal proof
systems

that are both sound and complete. This does not hold for higher order
logics.
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Paradoxes

“Paradoxes” show us the need of precise definitions of foundational
concepts.

Cretan paradox

Cretan said: “All Cretans are liars.”

Barber paradox

There is a barber in a town who shaves all that do not shave
themselves.

Does he shave himself?

Liar paradox

This sentence is false.

Berry paradox

The expression “The smallest positive integer not definable in under

eleven words” defines it in ten words.
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Language

Propositional logic is a “logic of propositional connectives”. We start from

a (nonempty) set P of propositional letters (variables), e.g.

P = {p, p1, p2, . . . , q, q1, q2, . . . }

We usually assume that P is countable.

The language of propositional logic (over P) consists of symbols

propositional letters from P
propositional connectives ¬, ∧, ∨, →, ↔
parentheses ( , )

Thus the language is given by the set P. We say that connectives and

parentheses are symbols of logic.

We also use symbols for constants > (true), ⊥ (false) which are introduced
as shortcuts for p ∨ ¬p, resp. p ∧ ¬p where p is any fixed variable from P.
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Formula

Propositional formulae (propositions) (over P) are given inductively by

(i) every propositional letter from P is a proposition,

(ii) if ϕ, ψ are propositions, then also

(¬ϕ) , (ϕ ∧ ψ) , (ϕ ∨ ψ) , (ϕ→ ψ) , (ϕ↔ ψ)

are propositions,

(iii) every proposition is formed by a finite number of steps (i), (ii).

Thus propositions are (well-formed) finite sequences of symbols

from the given language (strings).

A proposition that is a part of another proposition ϕ as a substring is

called a subformula (subproposition) of ϕ.

The set of all propositions over P is denoted by VFP.

The set of all letters (variables) that occur in ϕ is denoted by var(ϕ).
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Conventions

After introducing (standard) priorities for connectives we are allowed in

a concise form to omit parentheses that are around a subformula formed

by a connective of a higher priority.

(1) →, ↔
(2) ∧, ∨
(3) ¬

The outer parentheses can be omitted as well, e.g.

(((¬p) ∧ q)→ (¬(p ∨ (¬q)))) is shortly ¬p ∧ q → ¬(p ∨ ¬q)

Note If we do not respect the priorities, we can obtain an ambiguous form

or even a concise form of a non-equivalent proposition.

Further possibilities to omit parentheses follow from semantical properties
of connectives (associativity of ∨, ∧).
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Formation trees
A formation tree is a finite ordered tree whose nodes are labeled with

propositions according to the following rules

leaves (and only leaves) are labeled with propositional letters,

if a node has label (¬ϕ), then it has a single son labeled with ϕ,

if a node has label (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), or (ϕ↔ ψ), then it
has two sons, the left son labeled with ϕ, and the right son labeled
with ψ.

A formation tree of a proposition ϕ is a formation tree with the root
labeled with ϕ.

Proposition Every proposition is associated with a unique formation tree.

Proof By induction on the number of nested parentheses.

Note Such proofs are called proofs by the structure of the formula or by
the depth of the formation tree.
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Semantics
We consider only two-valued logic.

Propositional letters represent (atomic) statements whose ‘meaning’
is given by an assignment of truth values 0 (false) or 1 (true).

Semantics of propositional connectives is given by their truth tables.

p q ¬p p ∧ q p ∨ q p → q p ↔ q

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1

This determines the truth value of every proposition based on the
values assigned to its propositional letters.

Thus we may assign “truth tables” also to all propositions. We say
that propositions represent Boolean functions

A Boolean function is an n-ary operation on 2 = {0, 1}, i.e.,
f : {0, 1}n → {0, 1}.
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Truth valuations
A truth assignment is a function v : P→ {0, 1}, i.e. v ∈ P2.

A truth value v(ϕ) of a proposition ϕ for a truth assignment v is
given by

v(p) = v(p) if p ∈ P v(¬ϕ) = −1(v(ϕ))

v(ϕ ∧ ψ) = ∧1(v(ϕ), v(ψ)) v(ϕ ∨ ψ) = ∨1(v(ϕ), v(ψ))

v(ϕ→ ψ) = →1 (v(ϕ), v(ψ)) v(ϕ↔ ψ) = ↔1 (v(ϕ), v(ψ))

where −1, ∧1, ∨1, →1, ↔1 are the Boolean functions given by the
tables.

Proposition The truth value of a proposition ϕ depends only on the truth
assignment of var(ϕ).

Proof Easily by induction on the structure of the formula.

Note Since the function v : VFP → 2 is a unique extension of the
function v , we can (unambiguously) write v instead of v .
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Semantic notions

A proposition ϕ over P is

is true in (satisfied by) an assignment v ∈ P2, if v(ϕ) = 1. Then v is

a satisfying assignment for ϕ, denoted by v |= ϕ.

valid (a tautology), if v(ϕ) = 1 for every v ∈ P2, i.e. ϕ is satisfied

by every assignment, denoted by |= ϕ.

unsatisfiable (a contradiction), if v(ϕ) = 0 for every v ∈ P2, i.e.

¬ϕ is valid.

independent (a contingency), if v1(ϕ) = 0 and v2(ϕ) = 1 for some

v1, v2 ∈ P2, i.e. ϕ is neither a tautology nor a contradiction.

satisfiable, if v(ϕ) = 1 for some v ∈ P2, i.e. ϕ is not a contradiction.

Propositions ϕ and ψ are (logically) equivalent, denoted by ϕ ∼ ψ, if

v(ϕ) = v(ψ) for every v ∈ P2, i.e. the proposition ϕ↔ ψ is valid.
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Models

We reformulate these semantic notions in the terminology of models.

A model of a language P is a truth assignment of P. The class of all
models of P is denoted by M(P), so M(P) = P2. A proposition ϕ over P is

true in a model v ∈ M(P), if v(ϕ) = 1. Then v is a model of ϕ,
denoted by v |= ϕ, and the class of all models of ϕ is

MP(ϕ) = {v ∈ M(P) | v |= ϕ}

valid (a tautology) if it is true in every model of the language,
denoted by |= ϕ.

unsatisfiable (a contradiction) if it does not have a model.

independent if it is true in some model and false in other.

satisfiable if it has a model.

Propositions ϕ and ψ are (logically) equivalent, denoted by ϕ ∼ ψ, if they
have same models.
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Adequacy
Language of propositional logic has basic connectives ¬ , ∧ , ∨ , → , ↔.
In general, we can introduce n-ary connective for any Boolean function, e.g.

p ↓ q “neither p nor q” (NOR, Peirce arrow)

p ↑ q “not both p and q” (NAND, Sheffer stroke)

A set of connectives is adequate if they can express any Boolean function

by some (well) formed proposition from them.

Proposition {¬ ,∧ ,∨} is adequate.

Proof Any f : n2→ 2 is expressed by the proposition
∨

v∈f −1[1]

∧n−1
i=0 p

v(i)
i

where p
v(i)
i stands for the proposition pi if v(i) = 1; and for ¬pi if

v(i) = 0. For f −1[1] = ∅ we take the proposition ⊥.

Proposition {¬ ,→} is adequate.

Proof (p ∧ q) ∼ ¬(p → ¬q), (p ∨ q) ∼ (¬p → q).
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CNF and DNF
A literal is a propositional letter or its negation. For a propositional
letter p let p0 denote the literal ¬p and let p1 denote the literal p.
For a literal l let l denote the complementary literal of l .

A clause is a disjunction of literals, by the empty clause we mean ⊥.

A proposition is in conjunctive normal form (CNF) if it is a
conjunction of clauses. By the empty proposition in CNF we mean >.

An elementary conjunction is a conjunction of literals, by the empty
conjunction we mean >.

A proposition is in disjunctive normal form (DNF) if it is a disjunction
of elementary conjunctions. By the empty proposition in DNF we
mean ⊥.

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its
clauses contains a pair of complementary literals. A proposition in DNF is
satisfiable if and only if at least one of its elementary conjunctions does
not contain a pair of complementary literals.
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Transformations by tables

Proposition Let K ⊆ P2 where P is finite. Denote K = P2 \ K. Then

MP
( ∨

v∈K

∧
p∈P

pv(p)
)

= K = MP
( ∧

v∈K

∨
p∈P

pv(p)
)

Proof The first equality follows from w(
∧

p∈P p
v(p)) = 1 whenever w = v ,

for every w ∈ P2. Similarly, the second one follows from
w(
∨

p∈P p
v(p)) = 1 whenever w 6= v .

For example, K = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)} can be modeled by

(p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r) ∼
(p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r)

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition ϕ depends only on the assignment of
var(ϕ) which is finite. Hence we can apply the above proposition for
K = MP(ϕ) and P = var(ϕ).
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Transformations by rules
Proposition Let ϕ′ be the proposition obtained from ϕ by replacing some

occurrences of a subformula ψ with ψ′. If ψ ∼ ψ′, then ϕ ∼ ϕ′.

Proof Easily by induction on the structure of the formula.

(1) (ϕ→ ψ) ∼ (¬ϕ ∨ ψ), (ϕ↔ ψ) ∼ ((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ))

(2) ¬¬ϕ ∼ ϕ, ¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ), ¬(ϕ ∨ ψ) ∼ (¬ϕ ∧ ¬ψ)

(3) (ϕ ∨ (ψ ∧ χ)) ∼ ((ψ ∧ χ) ∨ ϕ) ∼ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))

(3)’ (ϕ ∧ (ψ ∨ χ)) ∼ ((ψ ∨ χ) ∧ ϕ) ∼ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

Proposition Every proposition can be transformed into CNF / DNF
applying the transformation rules (1), (2), (3)/(3)′.

Proof Easily by induction on the structure of the formula.

Proposition Assume that ϕ contains only ¬, ∧, ∨ and ϕ∗ is obtained
from ϕ by interchanging ∧ and ∨, and by complementing all literals. Then
¬ϕ ∼ ϕ∗.

Proof Easily by induction on the structure of the formula.
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Please enroll in our Moodle course (if you haven’t done so yet):
https://dl1.cuni.cz/course/view.php?id=10128

Please use the discussion forum on Moodle whenever possible, and
Moodle messages.

The Limnu whiteboards are only available for 14 days (save them
manually if you want).

Let me know if you want to schedule office hours!

The issue with my microphone should be fixed now. (Let me know in
case it reappears!)

In the slides, VFP stands for “very many, actually, all propositions
over the language P”, the notation PFP is reserved for “predicate
(first-order) formulas”.
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Semantics
We consider only two-valued logic.

Propositional letters represent (atomic) statements whose ‘meaning’
is given by an assignment of truth values 0 (false) or 1 (true).

Semantics of propositional connectives is given by their truth tables.

p q ¬p p ∧ q p ∨ q p → q p ↔ q

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1

This determines the truth value of every proposition based on the
values assigned to its propositional letters.

Thus we may assign “truth tables” also to all propositions. We say
that propositions represent Boolean functions

A Boolean function is an n-ary operation on 2 = {0, 1}, i.e.,
f : {0, 1}n → {0, 1}.
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Truth valuations
A truth assignment is a function v : P→ {0, 1}, i.e. v ∈ P2.

A truth value v(ϕ) of a proposition ϕ for a truth assignment v is
given by

v(p) = v(p) if p ∈ P v(¬ϕ) = −1(v(ϕ))

v(ϕ ∧ ψ) = ∧1(v(ϕ), v(ψ)) v(ϕ ∨ ψ) = ∨1(v(ϕ), v(ψ))

v(ϕ→ ψ) = →1 (v(ϕ), v(ψ)) v(ϕ↔ ψ) = ↔1 (v(ϕ), v(ψ))

where −1, ∧1, ∨1, →1, ↔1 are the Boolean functions given by the
tables.

Proposition The truth value of a proposition ϕ depends only on the truth
assignment of var(ϕ).

Proof Easily by induction on the structure of the formula.

Note Since the function v : VFP → 2 is a unique extension of the
function v , we can (unambiguously) write v instead of v .
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Semantic notions

A proposition ϕ over P is

is true in (satisfied by) an assignment v ∈ P2, if v(ϕ) = 1. Then v is

a satisfying assignment for ϕ, denoted by v |= ϕ.

valid (a tautology), if v(ϕ) = 1 for every v ∈ P2, i.e. ϕ is satisfied

by every assignment, denoted by |= ϕ.

unsatisfiable (a contradiction), if v(ϕ) = 0 for every v ∈ P2, i.e.

¬ϕ is valid.

independent (a contingency), if v1(ϕ) = 0 and v2(ϕ) = 1 for some

v1, v2 ∈ P2, i.e. ϕ is neither a tautology nor a contradiction.

satisfiable, if v(ϕ) = 1 for some v ∈ P2, i.e. ϕ is not a contradiction.

Propositions ϕ and ψ are (logically) equivalent, denoted by ϕ ∼ ψ, if

v(ϕ) = v(ψ) for every v ∈ P2, i.e. the proposition ϕ↔ ψ is valid.
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Models

We reformulate these semantic notions in the terminology of models.

A model of a language P is a truth assignment of P. The class of all
models of P is denoted by M(P), so M(P) = P2. A proposition ϕ over P is

true in a model v ∈ M(P), if v(ϕ) = 1. Then v is a model of ϕ,
denoted by v |= ϕ, and the class of all models of ϕ is

MP(ϕ) = {v ∈ M(P) | v |= ϕ}

valid (a tautology) if it is true in every model of the language,
denoted by |= ϕ.

unsatisfiable (a contradiction) if it does not have a model.

independent if it is true in some model and false in other.

satisfiable if it has a model.

Propositions ϕ and ψ are (logically) equivalent, denoted by ϕ ∼ ψ, if they
have same models.
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Adequacy
Language of propositional logic has basic connectives ¬ , ∧ , ∨ , → , ↔.
In general, we can introduce n-ary connective for any Boolean function, e.g.

p ↓ q “neither p nor q” (NOR, Peirce arrow)

p ↑ q “not both p and q” (NAND, Sheffer stroke)

A set of connectives is adequate if they can express any Boolean function

by some (well) formed proposition from them.

Proposition {¬ ,∧ ,∨} is adequate.

Proof Any f : n2→ 2 is expressed by the proposition
∨

v∈f −1[1]

∧n−1
i=0 p

v(i)
i

where p
v(i)
i stands for the proposition pi if v(i) = 1; and for ¬pi if

v(i) = 0. For f −1[1] = ∅ we take the proposition ⊥.

Proposition {¬ ,→} is adequate.

Proof (p ∧ q) ∼ ¬(p → ¬q), (p ∨ q) ∼ (¬p → q).
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CNF and DNF
A literal is a propositional letter or its negation. For a propositional
letter p let p0 denote the literal ¬p and let p1 denote the literal p.
For a literal l let l denote the complementary literal of l .

A clause is a disjunction of literals, by the empty clause we mean ⊥.

A proposition is in conjunctive normal form (CNF) if it is a
conjunction of clauses. By the empty proposition in CNF we mean >.

An elementary conjunction is a conjunction of literals, by the empty
conjunction we mean >.

A proposition is in disjunctive normal form (DNF) if it is a disjunction
of elementary conjunctions. By the empty proposition in DNF we
mean ⊥.

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its
clauses contains a pair of complementary literals. A proposition in DNF is
satisfiable if and only if at least one of its elementary conjunctions does
not contain a pair of complementary literals.
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Transformations by tables

Proposition Let K ⊆ P2 where P is finite. Denote K = P2 \ K. Then

MP
( ∨

v∈K

∧
p∈P

pv(p)
)

= K = MP
( ∧

v∈K

∨
p∈P

pv(p)
)

Proof The first equality follows from w(
∧

p∈P p
v(p)) = 1 whenever w = v ,

for every w ∈ P2. Similarly, the second one follows from
w(
∨

p∈P p
v(p)) = 1 whenever w 6= v .

For example, K = {(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)} can be modeled by

(p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r) ∼
(p ∨ q ∨ r) ∧ (p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r)

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition ϕ depends only on the assignment of
var(ϕ) which is finite. Hence we can apply the above proposition for
K = MP(ϕ) and P = var(ϕ).
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Transformations by rules
Proposition Let ϕ′ be the proposition obtained from ϕ by replacing some

occurrences of a subformula ψ with ψ′. If ψ ∼ ψ′, then ϕ ∼ ϕ′.
Proof Easily by induction on the structure of the formula.

(1) (ϕ→ ψ) ∼ (¬ϕ ∨ ψ), (ϕ↔ ψ) ∼ ((¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ))

(2) ¬¬ϕ ∼ ϕ, ¬(ϕ ∧ ψ) ∼ (¬ϕ ∨ ¬ψ), ¬(ϕ ∨ ψ) ∼ (¬ϕ ∧ ¬ψ)

(3) (ϕ ∨ (ψ ∧ χ)) ∼ ((ψ ∧ χ) ∨ ϕ) ∼ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))

(3)’ (ϕ ∧ (ψ ∨ χ)) ∼ ((ψ ∨ χ) ∧ ϕ) ∼ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))

Proposition Every proposition can be transformed into CNF / DNF
applying the transformation rules (1), (2), (3)/(3)′.

Proof Easily by induction on the structure of the formula.

Proposition Assume that ϕ contains only ¬, ∧, ∨ and ϕ∗ is obtained
from ϕ by interchanging ∧ and ∨, and by complementing all literals. Then
¬ϕ ∼ ϕ∗.
Proof Easily by induction on the structure of the formula.
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Boolean Satisfiability and SAT solvers

The SAT problem: Is a given propositional formula satisfiable?

Example (boardomino) Is it possible to perfectly cover a chessboard
with two diagonally opposite corners removed using domino tiles?
We can easily form a propositional formula that is satisfiable, if and
only if the answer is yes. Then we can test its satisfiability using a
SAT solver.

Best SAT solvers: http://www.satcompetition.org/

We will use Glucose, and the DIMACS file format for CNF input.

In general, can we convert all of mathematics to logical formulas? AI,
theorem proving, Peano: Formulario (1895-1908), Mizar system,

Why people (usually) do not do it? How can we solve the boardomino
problem more elegantly? What is our approach based on?1

1
Each domino tile covers one white and one black field, but there are more fields of one color since both the removed

corners have the same color.
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2-SAT
A proposition in CNF is in k-CNF if every clause has at most k
literals.

k-SAT is the following problem (for fixed k > 0)

Instance: A proposition ϕ in k-CNF.

Question: Is ϕ satisfiable?

The problem k-SAT for k ≥ 3 is an NP-complete problem. We will show
that 2-SAT can be solved in linear time (with respect to the length of ϕ).

We will neglect implementation details (computational model,
representation in memory) and use the following fact (see [ADS I]):

Proposition A partition of a directed graph (V ,E ) to strongly connected

components can be found in time O(|V |+ |E |).

A directed graph G is strongly connected if for every two vertices u
and v there are directed paths both from u to v and from v to u.

A strongly connected component of a graph G is a maximal strongly
connected subgraph of G .
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Implication graphs
The implication graph Gϕ of a 2-CNF proposition ϕ is the following
directed graph:

vertices are all the propositional letters in ϕ and their negations,

a clause l1 ∨ l2 in ϕ is represented by a pair of edges l1 → l2, l2 → l1,

a clause l1 in ϕ is represented by an edge l1 → l1.

p¬p

¬r¬q

qr

t

¬t

s ¬s
¬x

¬y

y

x

c ¬c
p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬r) ∧ (p ∨ r) ∧ (r ∨ ¬s) ∧ (¬p ∨ t) ∧ (q ∨ t) ∧ ¬s ∧ (x ∨ y)

Proposition ϕ is satisfiable if and only if no strongly connected
component of Gϕ contains a pair of complementary literals.

Proof Every satisfying assignment has to assign the same value to all
literals in one component; the left-to-right implication (necessity) holds.
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Satisfying assignment

For the right-to-left implication (sufficiency), let G ∗ϕ be the graph obtained
from Gϕ by contracting strongly connected components to single vertices.

Observation G ∗ϕ is acyclic, and therefore has a topological ordering <.

A directed graph is acyclic if it is has no directed cycles.

A linear ordering < of vertices of a directed graph is topological if
p < q for every edge from p to q.

Now for every unassigned component in an increasing order by <, assign 0
to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment v satisfies ϕ. If not, then G ∗ϕ
contains edges p → q and q → p with v(p) = 1 and v(q) = 0. But this
contradicts the order of assigning values to components since p < q and
q < p.

Corollary 2-SAT can be solved in linear time.
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Horn-SAT

A unit clause is a clause containing a single literal,

a Horn clause is a clause containing at most one positive literal,

¬p1 ∨ · · · ∨ ¬pn ∨ q ∼ (p1 ∧ · · · ∧ pn)→ q

a Horn formula is a conjunction of Horn clauses,

Horn-SAT is the problem of satisfiability of a given Horn formula.

Algorithm

(1) if ϕ contains a pair of unit clauses l and l, then it is not satisfiable,

(2) if ϕ contains a unit clause l , then assign 1 to l , remove all clauses
containing l , remove l from all clauses, and repeat from the start,

(3) if ϕ does not contain a unit clause, then it is satisfied by assigning 0
to all remaining propositional variables.

Step (2) is called unit propagation.
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Unit propagation

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬r ∨ ¬s) ∧ (¬t ∨ s) ∧ s v(s) = 1

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ ¬r v(¬r) = 1

(¬p ∨ q) ∧ (¬p ∨ ¬q) v(p) = v(q) = v(t) = 0

Observation Let ϕl be the proposition obtained from ϕ by unit
propagation. Then ϕl is satisfiable if and only if ϕ is satisfiable.

Corollary The algorithm is correct (it solves Horn-SAT).

Proof The correctness in Step (1) is obvious, in Step (2) it follows from
the observation, in Step (3) it follows from the Horn form since every
remaining clause contains at least one negative literal.

Note A direct implementation requires quadratic time, but with an
appropriate representation in memory, one can achieve linear time (w.r.t.
the length of ϕ).
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Theory
Informally, a description of the “world” to which we restrict ourselves, i.e.,
which we want to model.

A propositional theory over the language P is any set T ⊆ VFP if
propositions. The propositions in T are axioms of the theory T .

A model of the theory T over P is an assignment v ∈ M(P) (i.e., a
model of the language) in which all axioms of T are true. We write
v |= T (“v models T”).

The class of (all) models of T is

MP(T ) = {v ∈ M(P) | v |= ϕ for all ϕ ∈ T}.
For example, for T = {p, ¬p ∨ ¬q, q → r} over P = {p, q, r}:

MP(T ) = {(1, 0, 0), (1, 0, 1)}

If a theory is finite, it can be replaced by a conjunction of its axioms.

We write M(T , ϕ) as a shortcut for M(T ∪ {ϕ}).
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Semantics with respect to a theory
Semantic notions can be defined relative to a theory (more precisely, its
models). Let T be a theory over P. A proposition ϕ over P is

valid in T (true in T ) if it is true in every model of T , denoted by
T |= ϕ, we also say that ϕ is a (semantic) consequence of T ,

unsatisfiable (contradictory) in T (inconsistent with T ) if it is false in
every model of T ,

independent (or contingency) in T if it is true in some model of T
and false in some other,

satisfiable in T (consistent with T ) if it is true in some model of T .

Propositions ϕ and ψ are equivalent in T (T-equivalent), denoted by
ϕ ∼T ψ, if for every model v of T , v |= ϕ if and only if v |= ψ.

Note If all axioms of a theory T are valid (tautologies), e.g for T = ∅,
then all notions with respect to T correspond to the same notions in
(pure) logic.
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Consequences of a theory

The consequences of a theory T over P is the set θP(T ) of all propositions
that are valid in T , i.e.

θP(T ) = {ϕ ∈ VFP | T |= ϕ}.

Proposition2 For theories T ⊆ T ′ and propositions ϕ,ϕ1, . . . , ϕn over P,

(1) T ⊆ θP(T ) = θP(θP(T )),

(2) T ⊆ T ′ ⇒ θP(T ) ⊆ θP(T ′),

(3) ϕ ∈ θP({ϕ1, . . . , ϕn}) ⇔ |= (ϕ1 ∧ . . . ∧ ϕn)→ ϕ.

Proof Easily from the definitions, since T |= ϕ⇔ M(T ) ⊆ M(ϕ) and

M(θ(T )) = M(T ),

T ⊆ T ′ ⇒ M(T ′) ⊆ M(T ),

|= ψ → ϕ ⇔ M(ψ) ⊆ M(ϕ) and M(ϕ1∧ . . .∧ϕn) = M(ϕ1, . . . , ϕn).

2This proposition says that θ is a “closure operator”.
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Properties of theories

A propositional theory T over P is (semantically)

inconsistent (or unsatisfiable) if T |= ⊥, otherwise it is consistent (or
satisfiable),

complete if it is consistent, and T |= ϕ or T |= ¬ϕ for every
ϕ ∈ VFP, i.e. no proposition over P is independent in T ,

an extension of a theory T ′ over P′ if P′ ⊆ P and θP
′
(T ′) ⊆ θP(T );

we say that an extension T of a theory T ′ is simple if P = P′; and
conservative if θP

′
(T ′) = θP(T ) ∩VFP′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa,

Observation Let T and T ′ be theories over P. Then T is (semantically)

(i) consistent, if and only if it has a model,

(ii) complete, if and only if it has a single model,

(iii) extension of T ′, if and only if MP(T ) ⊆ MP(T ′),

(iv) equivalent with T ′, if and only if MP(T ) = MP(T ′).
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Lindenbaum-Tarski algebra
Let T be a consistent theory over P. On the quotient set VFP/∼T we can
naturally define operations ¬, ∧, ∨, ⊥, > using representatives, e.g

[ϕ]∼T
∧ [ψ]∼T

= [ϕ ∧ ψ]∼T

The Lindenbaum-Tarski algebra for T is

AV P(T ) = 〈VFP/∼T ,¬,∧,∨,⊥,>〉
Since ϕ ∼T ψ ⇔ M(T , ϕ) = M(T , ψ), it follows that the mapping
h : VFP/∼T → P(M(T )) defined by h([ϕ]∼T

) = M(T , ϕ) is a
(well-defined) injective function, and satisfies the following properties.
Moreover, h is surjective if M(T ) is finite.

h(¬[ϕ]∼T
) = M(T ) \M(T , ϕ)

h([ϕ]∼T
∧ [ψ]∼T

) = M(T , ϕ) ∩M(T , ψ)

h([ϕ]∼T
∨ [ψ]∼T

) = M(T , ϕ) ∪M(T , ψ)

h([⊥]∼T
) = ∅, h([>]∼T

) = M(T )

Corollary If T is a consistent theory over a finite P, then AV P(T ) is a
Boolean algebra isomorphic via h to the (finite) algebra of sets P(M(T )).
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Analysis of theories over finite languages

Let T be a consistent theory over P where |P| = n ∈ N+ and
m = |MP(T )|. Then the number of (mutually) inequivalent

propositions (or theories) over P is 22n ,

propositions over P that are valid (contradictory) in T is 22n−m,

propositions over P that are independent in T is 22n − 2 · 22n−m,

simple extensions of T is 2m, out of which 1 is inconsistent,

complete simple extensions of T is m.

And the number of (mutually) T -inequivalent

propositions over P is 2m,

propositions over P that are valid (contradictory) (in T ) is 1,

propositions over P that are independent (in T ) is 2m − 2.

Proof Using the bijection of VFP/∼ resp. VFP/∼T with P(M(P)) resp.
P(MP(T )) it suffices to count the corresponding sets of models.
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2-SAT
A proposition in CNF is in k-CNF if every clause has at most k
literals.

k-SAT is the following problem (for fixed k > 0)

Instance: A proposition ϕ in k-CNF.

Question: Is ϕ satisfiable?

The problem k-SAT for k ≥ 3 is an NP-complete problem. We will show
that 2-SAT can be solved in linear time (with respect to the length of ϕ).

We will neglect implementation details (computational model,
representation in memory) and use the following fact (see [ADS I]):

Proposition A partition of a directed graph (V ,E ) to strongly connected

components can be found in time O(|V |+ |E |).

A directed graph G is strongly connected if for every two vertices u
and v there are directed paths both from u to v and from v to u.

A strongly connected component of a graph G is a maximal strongly
connected subgraph of G .
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Implication graphs
The implication graph Gϕ of a 2-CNF proposition ϕ is the following
directed graph:

vertices are all the propositional letters in ϕ and their negations,

a clause l1 ∨ l2 in ϕ is represented by a pair of edges l1 → l2, l2 → l1,

a clause l1 in ϕ is represented by an edge l1 → l1.

p¬p

¬r¬q

qr

t

¬t

s ¬s
¬x

¬y

y

x

c ¬c
p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬r) ∧ (p ∨ r) ∧ (r ∨ ¬s) ∧ (¬p ∨ t) ∧ (q ∨ t) ∧ ¬s ∧ (x ∨ y)

Proposition ϕ is satisfiable if and only if no strongly connected
component of Gϕ contains a pair of complementary literals.

Proof Every satisfying assignment has to assign the same value to all
literals in one component; the left-to-right implication (necessity) holds.
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Satisfying assignment

For the right-to-left implication (sufficiency), let G ∗ϕ be the graph obtained
from Gϕ by contracting strongly connected components to single vertices.

Observation G ∗ϕ is acyclic, and therefore has a topological ordering <.

A directed graph is acyclic if it is has no directed cycles.

A linear ordering < of vertices of a directed graph is topological if
p < q for every edge from p to q.

Now for every unassigned component in an increasing order by <, assign 0
to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment v satisfies ϕ. If not, then G ∗ϕ
contains edges p → q and q → p with v(p) = 1 and v(q) = 0. But this
contradicts the order of assigning values to components since p < q and
q < p.

Corollary 2-SAT can be solved in linear time.
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Horn-SAT

A unit clause is a clause containing a single literal,

a Horn clause is a clause containing at most one positive literal,

¬p1 ∨ · · · ∨ ¬pn ∨ q ∼ (p1 ∧ · · · ∧ pn)→ q

a Horn formula is a conjunction of Horn clauses,

Horn-SAT is the problem of satisfiability of a given Horn formula.

Algorithm

(1) if ϕ contains a pair of unit clauses l and l, then it is not satisfiable,

(2) if ϕ contains a unit clause l , then assign 1 to l , remove all clauses
containing l , remove l from all clauses, and repeat from the start,

(3) if ϕ does not contain a unit clause, then it is satisfied by assigning 0
to all remaining propositional variables.

Step (2) is called unit propagation.
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Unit propagation

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬r ∨ ¬s) ∧ (¬t ∨ s) ∧ s v(s) = 1

(¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ ¬r v(¬r) = 1

(¬p ∨ q) ∧ (¬p ∨ ¬q) v(p) = v(q) = v(t) = 0

Observation Let ϕl be the proposition obtained from ϕ by unit
propagation. Then ϕl is satisfiable if and only if ϕ is satisfiable.

Corollary The algorithm is correct (it solves Horn-SAT).

Proof The correctness in Step (1) is obvious, in Step (2) it follows from
the observation, in Step (3) it follows from the Horn form since every
remaining clause contains at least one negative literal.

Note A direct implementation requires quadratic time, but with an
appropriate representation in memory, one can achieve linear time (w.r.t.
the length of ϕ).
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Theory
Informally, a description of the “world” to which we restrict ourselves, i.e.,
which we want to model.

A propositional theory over the language P is any set T ⊆ VFP if
propositions. The propositions in T are axioms of the theory T .

A model of the theory T over P is an assignment v ∈ M(P) (i.e., a
model of the language) in which all axioms of T are true. We write
v |= T (“v models T”).

The class of (all) models of T is

MP(T ) = {v ∈ M(P) | v |= ϕ for all ϕ ∈ T}.
For example, for T = {p, ¬p ∨ ¬q, q → r} over P = {p, q, r}:

MP(T ) = {(1, 0, 0), (1, 0, 1)}

If a theory is finite, it can be replaced by a conjunction of its axioms.

We write M(T , ϕ) as a shortcut for M(T ∪ {ϕ}).
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Semantics with respect to a theory
Semantic notions can be defined relative to a theory (more precisely, its
models). Let T be a theory over P. A proposition ϕ over P is

valid in T (true in T ) if it is true in every model of T , denoted by
T |= ϕ, we also say that ϕ is a (semantic) consequence of T ,

unsatisfiable (contradictory) in T (inconsistent with T ) if it is false in
every model of T ,

independent (or contingency) in T if it is true in some model of T
and false in some other,

satisfiable in T (consistent with T ) if it is true in some model of T .

Propositions ϕ and ψ are equivalent in T (T-equivalent), denoted by
ϕ ∼T ψ, if for every model v of T , v |= ϕ if and only if v |= ψ.

Note If all axioms of a theory T are valid (tautologies), e.g for T = ∅,
then all notions with respect to T correspond to the same notions in
(pure) logic.

NAIL062 Propositional & Predicate Logic Lecture 3 October 19, 2020 8 / 10



Consequences of a theory

The consequences of a theory T over P is the set θP(T ) of all propositions
that are valid in T , i.e.

θP(T ) = {ϕ ∈ VFP | T |= ϕ}.

Proposition1 For theories T ⊆ T ′ and propositions ϕ,ϕ1, . . . , ϕn over P,

(1) T ⊆ θP(T ) = θP(θP(T )),

(2) T ⊆ T ′ ⇒ θP(T ) ⊆ θP(T ′),

(3) ϕ ∈ θP({ϕ1, . . . , ϕn}) ⇔ |= (ϕ1 ∧ . . . ∧ ϕn)→ ϕ.

Proof Easily from the definitions, since T |= ϕ⇔ M(T ) ⊆ M(ϕ) and

M(θ(T )) = M(T ),

T ⊆ T ′ ⇒ M(T ′) ⊆ M(T ),

|= ψ → ϕ ⇔ M(ψ) ⊆ M(ϕ) and M(ϕ1∧ . . .∧ϕn) = M(ϕ1, . . . , ϕn).

1This proposition says that θ is a “closure operator”.
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Properties of theories

A propositional theory T over P is (semantically)

inconsistent (or unsatisfiable) if T |= ⊥, otherwise it is consistent (or
satisfiable),

complete if it is consistent, and T |= ϕ or T |= ¬ϕ for every
ϕ ∈ VFP, i.e. no proposition over P is independent in T ,

an extension of a theory T ′ over P′ if P′ ⊆ P and θP
′
(T ′) ⊆ θP(T );

we say that an extension T of a theory T ′ is simple if P = P′; and
conservative if θP

′
(T ′) = θP(T ) ∩VFP′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa,

Observation Let T and T ′ be theories over P. Then T is (semantically)

(i) consistent, if and only if it has a model,

(ii) complete, if and only if it has a single model,

(iii) extension of T ′, if and only if MP(T ) ⊆ MP(T ′),

(iv) equivalent with T ′, if and only if MP(T ) = MP(T ′).
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Lindenbaum-Tarski algebra
Let T be a consistent theory over P. On the quotient set VFP/∼T we can
naturally define operations ¬, ∧, ∨, ⊥, > using representatives, e.g

[ϕ]∼T
∧ [ψ]∼T

= [ϕ ∧ ψ]∼T

The Lindenbaum-Tarski algebra for T is

AV P(T ) = 〈VFP/∼T ,¬,∧,∨,⊥,>〉
Since ϕ ∼T ψ ⇔ M(T , ϕ) = M(T , ψ), it follows that the mapping
h : VFP/∼T → P(M(T )) defined by h([ϕ]∼T

) = M(T , ϕ) is a
(well-defined) injective function, and satisfies the following properties.
Moreover, h is surjective if M(T ) is finite.

h(¬[ϕ]∼T
) = M(T ) \M(T , ϕ)

h([ϕ]∼T
∧ [ψ]∼T

) = M(T , ϕ) ∩M(T , ψ)

h([ϕ]∼T
∨ [ψ]∼T

) = M(T , ϕ) ∪M(T , ψ)

h([⊥]∼T
) = ∅, h([>]∼T

) = M(T )

Corollary If T is a consistent theory over a finite P, then AV P(T ) is a
Boolean algebra isomorphic via h to the (finite) algebra of sets P(M(T )).
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Analysis of theories over finite languages

Let T be a consistent theory over P where |P| = n ∈ N+ and
m = |MP(T )|. Then the number of (mutually) inequivalent

propositions (or theories) over P is 22
n
,

propositions over P that are valid (contradictory) in T is 22
n−m,

propositions over P that are independent in T is 22
n − 2 · 22n−m,

simple extensions of T is 2m, out of which 1 is inconsistent,

complete simple extensions of T is m.

And the number of (mutually) T -inequivalent

propositions over P is 2m,

propositions over P that are valid (contradictory) (in T ) is 1,

propositions over P that are independent (in T ) is 2m − 2.

Proof Using the bijection of VFP/∼ resp. VFP/∼T with P(M(P)) resp.
P(MP(T )) it suffices to count the corresponding sets of models.
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Formal proof systems

We formalize precisely the notion of proof as a syntactical procedure.

In (standard) formal proof systems,

a proof is a finite object, built from axioms of a given theory,

T ` ϕ denotes that ϕ is provable from a theory T ,

if a formula has a proof, it can be found “algorithmically”

[assuming that T is “given algorithmically”],

We usually require that a formal proof system is

sound, i.e., every formula provable from a theory T is also valid in T ,

complete, i.e., every formula valid in T is also provable from T .

Examples of formal proof systems (calculi): tableaux methods, Hilbert

systems, Gentzen systems, natural deduction systems.
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Method of analytic tableaux

We assume that the language is fixed and countable, i.e. the set P of
propositional letters is countable. Then every theory over P is countable.

Main features of the tableau method (informally)

a tableau for a formula ϕ is a binary labeled tree representing
systematic search for counterexample to ϕ, i.e. a model of theory is
which ϕ is false,

a formula is proved if every branch in tableau ‘fails’, i.e
counterexample was not found. In this case the (systematic) tableau
will be finite,

if a counterexample exists, there will be a branch in a (finished)
tableau that provides us with this counterexample, but this branch
can be infinite.
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Introductory examples

F ((¬q ∨ p)→ p)F (((p→ q)→ p)→ p)

T ((p→ q)→ p)

Fp

T ((p→ q)→ p)

F (p→ q) Tp

F (p→ q)

Tp

Fq

⊗

⊗

T (¬q ∨ p)

Fp

T (¬q ∨ p)

T (¬q)

Tp

Fq

⊗

T (¬q)
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Explanation of the examples

Nodes in tableaux are labeled by entries. An entry is a formula with a sign
T / F representing an assumption that the formula is true / false in some
model. If this assumption is correct, then it is correct also for all the
entries in some branch below this entry.

In both examples we have finished (systematic) tableaux from no axioms.

On the left, there is a tableau proof for ((p → q)→ p)→ p. All
branches “failed”, denoted by ⊗, as each contains a pair Tϕ, Fϕ for
some ϕ (counterexample was not found). Thus the formula is
provable, we write: ` ((p → q)→ p)→ p

On the right, there is a (finished) tableau for (¬q ∨ p)→ p. The left

branch did not “fail” and is finished (all its entries were considered),
it provides us with a counterexample v(p) = v(q) = 0.

NAIL062 Propositional & Predicate Logic Lecture 4 October 26, 2020 8 / 19



Atomic tableaux

An atomic tableau is one of the following trees (labeled by entries), where
p is any propositional letter and ϕ, ψ are any propositions.

Tp Fp

T (¬ϕ)

Fϕ

F (¬ϕ)

Tϕ

T (ϕ ∧ ψ)

Tϕ

Tψ

F (ϕ ∧ ψ)

Fϕ Fψ

T (ϕ ∨ ψ)

Tϕ Tψ

F (ϕ ∨ ψ)

Fϕ

Fψ

T (ϕ→ ψ)

Fϕ Tψ

F (ϕ→ ψ)

Tϕ

Fψ

T (ϕ↔ ψ)

Tϕ

Tψ

Fϕ

Fψ

F (ϕ↔ ψ)

Tϕ

Fψ

Fϕ

Tψ

All tableaux will be formally defined using atomic tableaux and rules how
to expand them.
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Tableaux

A finite tableau is a binary tree labeled with entries defined inductively:

(i) every atomic tableau is a finite tableau,

(ii) if E is an entry on a branch B in a finite tableau τ and τ ′ is obtained
from τ by adjoining the atomic tableaux for E at the end of the
branch B, then τ ′ is also a finite tableau,

(iii) every finite tableau is formed by a finite number of steps (i), (ii).

A tableau is a sequence τ0, τ1, . . . , τn, . . . (finite or infinite) of finite
tableaux such that τn+1 is formed from τn by an application of (ii),
formally τ = ∪τn.

Remark It is not specified how to choose the entry E and the branch B
for expansion. This will be specified in systematic tableaux.
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Construction of tableaux

F ((¬q ∨ p)→ p)F (((p→ q)→ p)→ p)

T ((p→ q)→ p)

Fp

T ((p→ q)→ p)

F (p→ q) Tp

F (p→ q)

Tp

Fq

⊗

⊗

T (¬q ∨ p)

Fp

T (¬q ∨ p)

T (¬q)

Tp

Fq

⊗

T (¬q)

NAIL062 Propositional & Predicate Logic Lecture 4 October 26, 2020 11 / 19



Convention

We will not write the entry that is expanded again on the branch.

F ((¬q ∨ p)→ p)F (((p→ q)→ p)→ p)

T ((p→ q)→ p)

Fp

F (p→ q) Tp

Tp

Fq

⊗

⊗

T (¬q ∨ p)

Fp

Tp

Fq ⊗

T (¬q)

Beware We cannot use this convention later in tableau method for
predicate logic; the repeated entries will be needed again.
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Tableau proofs

Let E be an entry on a branch B in a tableau τ . We say that

the entry E is reduced on B if it occurs on B as the root of an atomic
tableau, i.e., it was already expanded on B during the construction
of τ ,

the branch B is contradictory if it contains entries Tϕ and Fϕ for
some proposition ϕ, otherwise B is noncontradictory. The branch B
is finished if it is contradictory or every entry on B is already reduced
on B,

the tableau τ is finished if every branch in τ is finished, and τ is
contradictory if every branch in τ is contradictory.

A tableau proof (proof by tableau) of ϕ is a contradictory tableau with the
root entry Fϕ; ϕ is (tableau) provable, denoted by ` ϕ, if it has a tableau
proof. Similarly, a refutation of ϕ by tableau is a contradictory tableau
with the root entry Tϕ; ϕ is (tableau) refutable if it has a refutation by
tableau, i.e. ` ¬ϕ.
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Examples

T ((p→ q)↔ (p ∧ ¬q))F (((¬p ∧ ¬q) ∨ p)→ (¬p ∧ ¬q))

T (¬p ∧ ¬q) Tp

⊗

T (p→ q)

T (p ∧ ¬q)

Tq

Tp

Fp

⊗

Tp

T (¬q) T (¬q)

Fq

⊗

F (p→ q)

F (p ∧ ¬q)

Tp

Fp

⊗ Tq

F (¬q)

Fq

⊗

T ((¬p ∧ ¬q) ∨ p)

F (¬p ∧ ¬q)

F (¬p) F (¬q)

Tp

V1 V2 V3

a) b)

a) F (¬p ∧ ¬q) not reduced on V1, V1 contradictory, V2 finished, V3

unfinished,

b) a (tableau) refutation of ϕ : (p → q)↔ (p ∧ ¬q), i.e. ` ¬ϕ.
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Tableau from a theory
How to add axioms of a given theory into a proof? A finite tableau from a
theory T is given by an additional rule

(ii)’ if B is a branch of a finite tableau (from T ) and ϕ ∈ T , then by
adjoining Tϕ at the end of B we get (again) a finite tableau from T .

We generalize other definitions by appending “from T”.

a tableau from T is a sequence τ0, τ1, . . . , τn, . . . of finite tableaux
from T such that τn+1 is formed from τn applying (ii) or (ii)’,
formally τ = ∪τn,

a tableau proof of ϕ from T is a contradictory tableaux from T with
Fϕ in the root. T ` ϕ denotes that ϕ is (tableau) provable from T .

a refutation of ϕ by a tableau from T is a contradictory tableau from
T with the root entry Tϕ.

Unlike in previous definitions, a branch B of a tableau from T is finished,
if it is contradictory, or every entry on B is already reduced on B and,
moreover, B contains Tϕ for every axiom ϕ ∈ T .
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Examples of tableaux from theories

Fp0Fψ

T (p1 → p0)

Tp0Fp1

T (ϕ→ ψ)

Fϕ Tψ

Tϕ

a) b)

⊗

⊗

⊗T (p2 → p1)

Tp1Fp2

⊗

a) A tableau proof of ψ from T = {ϕ,ϕ→ ψ}, so T ` ψ.

b) A finished tableau with the root Fp0 from T = {pn+1 → pn | n ∈ N}.
All branches are finished, the leftmost branch is noncontradictory and
infinite. It provides us the (only) model of T in which p0 is false.
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Systematic tableaux

We describe a systematic construction that leads to a finished tableau.

Let R be an entry and T = {ϕ0, ϕ1, . . . } be a (possibly infinite) theory.

(1) We take the atomic tableau for R as τ0. Proceed as follows:

(2) Let E be the leftmost entry in the smallest level as possible of the
tableau τn s.t. E is not reduced on some noncontradictory branch
through E .

(3) Let τ ′n be the tableau obtained from τn by adjoining the atomic
tableau for E to every noncontradictory branch through E . (If E does
not exist, we take τ ′n = τn.)

(4) Let τn+1 be the tableau obtained from τ ′n by adjoining Tϕn to every
noncontradictory branch that does not contain Tϕn yet. (If ϕn does
not exist, we take τn+1 = τ ′n.)

The systematic tableau from T for the entry R is the result of the above
construction, i.e. τ =

⋃
n≥0 τn.
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Systematic tableau is finished

Proposition Every systematic tableau is finished.

Proof Let τ = ∪τn be a systematic tableau from T = {ϕ0, ϕ1, . . . } with
root entry R.

If a branch is noncontradictory in τ , its prefix in every τn is
noncontradictory as well.

If an entry E is unreduced on some branch in τ , it is unreduced on its
prefix in every τn as well (assuming E occurs in this prefix).

There are only finitely many entries in τ in levels up to the level of E .

Thus, if E was unreduced on some noncontradictory branch in τ , it
would be considered in some step (2) and reduced by step (3).

By step (4) every ϕn ∈ T will be (no later than) in τn+1 on every
noncontradictory branch.

Hence in the systematic tableau τ , all branches are finished.
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Finiteness of proofs

König’s Lemma Every infinite, finitely branching tree contains an infinite
branch.

Proposition For every contradictory tableau τ = ∪τn there is some n
such that τn is a contradictory finite tableau.
Proof Let S be the set of nodes in τ that have no pair of contradictory
entries Tϕ, Fϕ amongst their predecessors.

If S was infinite, then by König’s lemma, the subtree of τ induced by
S would contain an infinite brach, and thus τ would not be
contradictory.

Since S is finite, for some m all nodes of S belong to levels up to m.

Thus every node in level m + 1 has a pair of contradictory entries
amongst its predecessors.

Let n be such that τn agrees with τ at least up to the level m + 1.

Then every branch in τn is contradictory.

Corollary If a systematic tableau (from a theory) is a proof, it is finite.
Proof In its construction, we extend only noncontradictory branches.
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Soundness
We say the an entry E agrees with an assignment v , if E is Tϕ and
v(ϕ) = 1, or if E is Fϕ and v(ϕ) = 0. A branch B agrees with v , if every
entry on V agrees with v .

Lemma Let v be a model of a theory T that agrees with the root entry of
a tableau τ = ∪τn from T. Then τ contains a branch that agrees with v.

Proof By induction we find a sequence B0,B1, . . . so that for every n, Bn

is a branch in τn agreeing with v and Bn is contained in Bn+1.

By considering all atomic tableaux we verify the base of induction.

If τn+1 is obtained from τn without extending Bn, we put Bn+1 = Bn.

If τn+1 is obtained from τn by adjoining Tϕ to Bn for some ϕ ∈ T ,
then let Bn+1 be this branch. Since v is a model of ϕ, Bn+1 agrees
with v .

Otherwise τn+1 is obtained from τn by adjoining the atomic tableau
for some entry E on Bn to the end of Bn. As E agrees with v and
atomic tableaux are verified, Bn we can extend to Bn+1 as well.
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Theorem on soundness

We will show that the tableau method in propositional logic is sound.

Theorem For every theory T and proposition ϕ, if ϕ is tableau provable

from T, then ϕ is valid in T , i.e. T ` ϕ ⇒ T |= ϕ.

Proof

Let ϕ be tableau provable from a theory T , i.e. there is a
contradictory tableau τ from T with the root entry Fϕ.

Suppose for a contradiction that ϕ is not valid in T , i.e. there exists
a model v of the theory T if which ϕ is false (a counterexample).

Since the root entry Fϕ agrees with v , by the previous lemma, there
is a branch in the tableau τ that agrees with v .

But this is impossible, since every branch of τ is contradictory, i.e. it
contains a pair of entries Tψ, Fψ for some ψ.
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Completeness
A noncontradictory branch in a finished tableau gives us a counterexample.

Lemma A noncontradictory branch B of a finished tableau τ agrees with
the following assignment:

v(p) =

{
1 if Tp occurs on B

0 otherwise

Proof By induction on the structure of formulas in entries occurring on B.
For an entry Tp on B, where p is a letter, we have v(p) = 1 by defn.

For an entry Fp on B, Tp in not on B since B is noncontradictory,
thus v(p) = 0 by definition of v .

For an entry T (ϕ ∧ ψ) on B, we have Tϕ and Tψ on B since τ is
finished. By induction, we have v(ϕ) = v(ψ) = 1, and thus
v(ϕ ∧ ψ) = 1.

For an entry F (ϕ ∧ ψ) on B, we have Fϕ or Fψ on B since τ is
finished. By induction, we have v(ϕ) = 0 or v(ψ) = 0, and thus
v(ϕ ∧ ψ) = 0.

For other entries similarly as in previous two cases.
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Theorem on completeness

We will show that the tableau method in propositional logic is complete.

Theorem For every theory T and proposition ϕ, if ϕ is valid in T , then ϕ
is tableau provable from T, i.e. T |= ϕ ⇒ T ` ϕ.

Proof Let ϕ be valid in T . We will show that an arbitrary finished tableau
(e.g. systematic) τ from theory T with the root entry Fϕ is contradictory.

If not, let B be some noncontradictory branch in τ .

By the previous lemma, there exists an assignment v such that B
agrees with v , in particular in the root entry Fϕ, i.e. v(ϕ) = 0.

Since B is finished, it contains Tψ for every ψ ∈ T .

Thus v is a model of theory T (since B agrees with v).

But this contradicts the assumption that ϕ is valid in T .

Hence the tableau τ is a proof of ϕ from T .
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Properties of theories

We introduce syntactic variants of previous semantically defined notions.

Let T be a theory over P. If ϕ is provable from T , we say that ϕ is a
theorem of T . The set of theorems of T is denoted by

ThmP(T ) = {ϕ ∈ VFP | T ` ϕ}.

We say that a theory T is

inconsistent if T ` ⊥, otherwise T is consistent,

complete if it is consistent and every proposition is provable or
refutable from T , i.e. T ` ϕ or T ` ¬ϕ for every ϕ ∈ VFP,

an extension of a theory T ′ over P′ if P′ ⊆ P and
ThmP′

(T ′) ⊆ ThmP(T ); we say that an extension T of a theory T ′ is
simple if P = P′; and conservative if ThmP′

(T ′) = ThmP(T ) ∩VFP′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa.
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Corollaries

From the soundness and completeness of the tableau method it follows
that these syntactic definitions agree with their semantic variants.

Corollary For every theory T and propositions ϕ, ψ over P,

T ` ϕ if and only if T |= ϕ,

ThmP(T ) = θP(T ),

T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,

T is complete if and only if T is semantically complete, i.e. it has a
single model,

T , ϕ ` ψ if and only if T ` ϕ→ ψ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of

tableaux.
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Theorem on compactness
Theorem A theory T has a model iff every finite subset of T has a
model.

Proof 1 The implication from left to right is obvious. If T has no model,
then it is inconsistent, i.e. ⊥ is provable by a systematic tableau τ from
T . Since τ is finite, ⊥ is provable from some finite T ′ ⊆ T , i.e. T ′ has no
model.

Remark This proof is based on finiteness of proofs, soundness, and
completeness. We present an alternative proof (applying König’s lemma).

Proof 2 Let T = {ϕi | i ∈ N}. Consider a tree S on (certain) finite binary
strings σ ordered by being a prefix. We put σ ∈ S if and only if there exists
an assignment v with prefix σ such that v |= ϕi for every i ≤ lth(σ).

Observation S has an infinite branch if and only if T has a model.

Since {ϕi | i ∈ n} ⊆ T has a model for every n ∈ N, every level in S is
nonempty. Thus S is infinite and moreover binary, hence by König’s
lemma, S contains an infinite branch.
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Application of compactness
A graf (V ,E ) is k-colorable if there exists c : V → k such that
c(u) 6= c(v) for every edge {u, v} ∈ E .

Theorem A countably infinite graph G = (V ,E ) is k-colorable if and
only if every finite subgraph of G is k-colorable.

Proof The implication ⇒ is obvious. Assume that every finite subgraph of
G is k-colorable. Consider P = {pu,i | u ∈ V , i ∈ k} and a theory T with
axioms

pu,0 ∨ · · · ∨ pu,k−1 for every u ∈ V ,

¬(pu,i ∧ pu,j) for every u ∈ V , i < j < k,

¬(pu,i ∧ pv ,i ) for every {u, v} ∈ E , i < k.

Then G is k-colorable if and only if T has a model. By compactness, it
suffices to show that every finite T ′ ⊆ T has a model. Let G ′ be the
subgraph of G induced by vertices u such that pu,i appears in T ′ for some
i . Since G ′ is k-colorable by the assumption, the theory T ′ has a model.
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Hilbert’s calculus
basic connectives: ¬, → (others can be defined from them)

logical axioms (schemes of axioms):

(i) ϕ→ (ψ → ϕ)

(ii) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(iii) (¬ϕ→ ¬ψ)→ (ψ → ϕ)

where ϕ, ψ, χ are any propositions (of a given language).

a rule of inference:
ϕ, ϕ→ ψ

ψ
(modus ponens)

A proof (in Hilbert-style) of a formula ϕ from a theory T is a finite
sequence ϕ0, . . . , ϕn = ϕ of formulas such that for every i ≤ n

ϕi is a logical axiom or ϕi ∈ T (an axiom of the theory), or

ϕi can be inferred from the previous formulas applying a rule of
inference.

Remark Choice of axioms and inference rules differs in various
Hilbert-style proof systems.
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Example and soundness
A formula ϕ is provable from T if it has a proof from T , denoted by
T `H ϕ. If T = ∅, we write `H ϕ.
Example: for T = {¬ϕ} we have T `H ϕ→ ψ for every ψ.

1) ¬ϕ an axiom of T

2) ¬ϕ→ (¬ψ → ¬ϕ) a logical axiom (i)

3) ¬ψ → ¬ϕ by modus ponens from 1), 2)

4) (¬ψ → ¬ϕ)→ (ϕ→ ψ) a logical axiom (iii)

5) ϕ→ ψ by modus ponens from 3), 4)

Theorem For every theory T and formula ϕ, T `H ϕ ⇒ T |= ϕ.

Proof

If ϕ is an axiom (logical or from T ), then T |= ϕ (logical axioms are
tautologies),

if T |= ϕ and T |= ϕ→ ψ, then T |= ψ, i.e. modus ponens is sound,

thus every formula in a proof from T is valid in T .

Remark The completeness theorem holds as well: T |= ϕ⇒ T `H ϕ.
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Resolution method - introduction

Main features of the resolution method (informally)

the underlying method of many systems, e.g. Prolog interpreters, SAT
solvers, automated reasoning (deduction/verification) systems, . . .

assumes input in CNF (in general, “expensive” transformation),

works under set representation (clausal form) of formulas,

has a single rule, so called resolution rule,

has no explicit axioms (or atomic tableaux) but certain axioms are
incorporated “inside” via various formatting rules,

is a refutation procedure, similarly as the tableau method; that is, it
tries to show that a given formula (or theory) is unsatisfiable,

has several refinements, e.g. with specific conditions on when the
resolution rule may be applied.
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Set representation (clausal from) of CNF formulas
A literal l is a prop. letter or its negation. l is its complementary
literal.

A clause C is a finite set of literals (“forming disjunction”). The
empty clause, denoted by �, is never satisfied (has no satisfied literal).

A formula S is a (possibly infinite) set of clauses (“forming
conjunction”). An empty formula ∅ is always satisfied (it has no
unsatisfied clause). Infinite formulas represent infinite theories (as
conjunction of axioms).

A (partial) assignment V is a consistent set of literals, i.e. not
containing any pair of complementary literals. An assignment V is
total if it contains a positive or negative literal for each prop. letter.

V satisfies S , denoted by V |= S , if C ∩ V 6= ∅ for every C ∈ S .

((¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬r ∨ ¬s) ∧ (¬t ∨ s) ∧ s) is represented by

S = {{¬p, q}, {¬p,¬q, r}, {¬r ,¬s}, {¬t, s}, {s}} and

V |= S for V = {s,¬r ,¬p}
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Resolution rule
Let C1, C2 be clauses with l ∈ C1, l ∈ C2 for some literal l . Then from C1

and C2 infer through the literal l the clause C , called a resolvent, where

C = (C1 \ {l}) ∪ (C2 \ {l}).
Equivalently, if t means union of disjoint sets,

C ′1 t {l},C ′2 t {l}
C ′1 ∪ C ′2

For example, from {p, q, r} and {¬p,¬q} we can infer {q,¬q, r} or
{p,¬p, r}.

Observation The resolution rule is sound; that is, for every assignment V
V |= C1 and V |= C2 ⇒ V |= C .

Remark The resolution rule is a special case of the (so called) cut rule

ϕ ∨ ψ, ¬ϕ ∨ χ
ψ ∨ χ

where ϕ, ψ, χ are arbitrary formulas.
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Resolution proof

A resolution proof (deduction) of a clause C from a formula S is a
finite sequence C0, . . . ,Cn = C such that for every i ≤ n, we have
Ci ∈ S or Ci is a resolvent of some previous clauses,

a clause C is (resolution) provable from S , denoted by S `R C , if it
has a resolution proof from S ,

a (resolution) refutation of a formula S is a resolution proof of �
from S ,

S is (resolution) refutable if S `R �.

Theorem (soundness) If S is resolution refutable, then S is
unsatisfiable.

Proof Let S `R �. If it was V |= S for some assignment V, from the
soundness of the resolution rule we would have V |= �, impossible.
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Resolution trees and closures

A resolution tree of a clause C from formula S is finite binary tree with
nodes labeled by clauses so that

(i) the root is labeled C ,

(ii) the leaves are labeled with clauses from S ,

(iii) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if S `R C.

A resolution closure R(S) of a formula S is the smallest set satisfying

(i) C ∈ R(S) for every C ∈ S ,

(ii) if C1,C2 ∈ R(S) and C is a resolvent of C1, C2, then C ∈ R(S).

Observation C ∈ R(S) if and only if S `R C.

Remark All notions on resolution proofs can therefore be equivalently
introduced in terms of resolution trees or resolution closures.
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Example

Formula ((p ∨ r) ∧ (q ∨ ¬r) ∧ (¬q) ∧ (¬p ∨ t) ∧ (¬s) ∧ (s ∨ ¬t)) is
unsatisfiable since for S = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}}
we have S `R �.

{¬q}

{p}

{p, q}

{q,¬r}{p, r} {¬p, t}

{¬p}

{¬p, s} {¬s}

{s,¬t}

The resolution closure of S (the closure of S under resolution) is

R(S) = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}, {p, q}, {¬r}, {r , t},
{q, t}, {¬t}, {¬p, s}, {r , s}, {t}, {q}, {q, s},�, {¬p}, {p}, {r}, {s}}.
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Reduction by substitution
For a formula S and a literal l , we define S l = {C \ {l} | l /∈ C ∈ S}
(cf. unit propagation)

Observation

S l is equivalent to a formula obtained from S by substituting the
constant > (true, 1) for all literals l and the constant ⊥ (false, 0) for
all literals l in S ,

Neither l nor l occurs in (the clauses of) S l .

if {l} ∈ S , then � ∈ S l .

Lemma S is satisfiable if and only if S l or S l is satisfiable.

Proof (⇒) Let V |= S for some V and assume (w.l.o.g.) that l /∈ V. Then
V |= S l as for l /∈ C ∈ S we have V \ {l , l} |= C and thus V |= C \ {l}.
(⇐) On the other hand, assume (w.l.o.g.) that V |= S l for some V. Since
neither l nor l occurs in S l , we have V ′ |= S l for V ′ = (V \ {l}) ∪ {l}.
Then V ′ |= S since for C ∈ S containing l we have l ∈ V ′ and for C ∈ S
not containing l we have V ′ |= (C \ {l}) ∈ S l .
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Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

Spq = ∅

Sp = {{¬q}}

Spq = { }

Sp = { , {¬q}}

S = {{p}, {¬q}, {¬p,¬q}}

Corollary S is unsatisfiable if and only if every branch contains �.

Remarks Since S can be infinite over a countable language, this tree can
be infinite. However, if S is unsatisfiable, by the compactness theorem
there is a finite S ′ ⊆ S that is unsatisfiable. Thus after reduction of all
literals occurring in S ′, there will be � in every branch after finitely many
steps.
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Completeness of resolution
Theorem If a finite S is unsatisfiable, then it is resolution refutable, i.e.
S `R �.

Proof Show that S `R � by induction on the number of variables in S .

If unsatisfiable S has no variable, it is S = {�} and thus S `R �,

Let l be a literal occurring in S . By Lemma, S l and S l are
unsatisfiable.
Since S l and S l have less variables than S , by induction there exist
resolution trees T l and T l for derivation of � from S l resp. S l .
If every leaf of T l is in S , then T l is a resolution tree of � from S ,
S `R �.
Otherwise, by appending the literal l to every leaf of T l that is not in
S , (and to all predecessors) we obtain a resolution tree of {l} from S .
Similarly, we get a resolution tree {l} from S by appending l in the

tree T l .
By resolution of roots {l} and {l} we get a res. tree of � from S .

Corollary If S is unsatisfiable, then it is resolution refutable, i.e. S `R �.
Proof Follows from the previous theorem by compactness.
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Linear resolution - introduction
The resolution method can be significantly refined.

A linear proof of a clause C from a formula S is a finite sequence

of pairs (C0,B0), . . . , (Cn,Bn) such that C0 ∈ S and for every i ≤ n

i) Bi ∈ S or Bi = Cj for some j < i , and

ii) Ci+1 is a resolvent of Ci and Bi where Cn+1 = C .

C0 is called a starting clause, Ci a central clause, Bi a side clause.

C is linearly provable from S , S `L C , if it has a linear proof from S .

A linear refutation of S is a linear proof of � from S .

S is linearly refutable if S `L �.

Observation (soundness) If S is linearly refutable, it is unsatisfiable.

Proof Every linear proof can be transformed to a (general) resolution
proof.

Remark The completeness is preserved as well (proof omitted here).
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Example of linear resolution

B0C0 {p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

{p}

C1

C2

Cn

Cn+1

B1

Bn

a) b)

{p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

c)

{p,¬q}{p, q}

{p}

a) a general form of linear resolution,

b) for S = {{p, q}, {p,¬q}, {¬p, q}, {¬p,¬q}} we have S `L �,

c) a transformation of a linear proof to a (general) resolution proof.
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LI-resolution

Linear resolution can be further refined for Horn formulas as follows.

a Horn clause is a clause containing at most one positive literal,

a Horn formula is a (possibly infinite) set of Horn clauses,

a fact is a (Horn) clause {p} where p is a positive literal,

a rule is a (Horn) clause with exactly one positive literal and at least
one negative literal. Rules and facts are program clauses,

a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and � /∈ S, it contains
some fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the
assignment of all propositional variables to 0 (resp. to 1).

A linear input resolution (LI-resolution) from a formula S is a linear
resolution from S in which every side clause Bi is from the (input) formula
S . We write S `LI C to denote that C is provable by LI-resolution from S .
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Completeness of LI-resolution for Horn formulas
Theorem If T is a satisfiable Horn formula but T ∪{G} is unsat. for some
goal G , then � has a LI-resolution from T ∪ {G} with starting clause G.

Proof By the compactness theorem we may assume that T is finite.

We proceed by induction on the number of variables in T .
By Observation, T contains a fact {p} for some variable p.
By Lemma, T ′ = (T ∪ {G})p = T p ∪ {Gp} is unsatisfiable where

Gp = G \ {p}.
If Gp = �, we have G = {p} and thus � is a resolvent of G and
{p} ∈ T .
Otherwise, since T p is satisfiable (by the assignment satisfying T )
and has less variables than T , by induction assumption, there is an
LI-resolution of � from T ′ starting with Gp.
By appending the literal p to all leaves that are not in T ∪ {G} (and
nodes below) we obtain an LI-resolution of {p} from T ∪ {G} that
starts with G .
By an additional resolution step with the fact {p} ∈ T we resolve �.
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Example of LI-resolution

T = {{p,¬r,¬s}, {r,¬q}, {q,¬s}, {s}},

{p,¬r,¬s}

{¬q,¬s} {q,¬s}

{¬s}

{r,¬q}{¬q,¬r,¬s}

{s}

T s = {{p,¬r}, {r,¬q}, {q}}

T sq = {{p,¬r}, {r}}

T sqr = {{p}}

G = {¬p,¬q}

Gs = {¬p,¬q}

Gsq = {¬p}

Gsqr = {¬p}

Gsqrp =

{p,¬r}

{¬q} {q}

{r,¬q}{¬q,¬r}{p,¬r}

{r}{¬r}{p}

T,G `LIT s, Gs `LIT sq, Gsq `LIT sqr, Gsqr `LI

G = {¬p,¬q}
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Program in Prolog
A (propositional) program (in Prolog) is a Horn formula containing only
program clauses, i.e. facts or rules.

p :− q, r. {p,¬q,¬r}

{r}
{q,¬s}

{¬p,¬q}

p :− s.

r.

s.

?− p, q.

q ∧ r → p

s→ p

r

s

{p,¬s}

{s}
a query a goal

a program

a rule

a fact

q :− s. s→ q

We want to know whether a given query follows from a given program.

Corollary For every program P and query (p1 ∧ . . . ∧ pn), the following
are equivalent:

(1) P |= p1 ∧ . . . ∧ pn,

(2) P ∪ {¬p1, . . . ,¬pn} is unsatisfiable,

(3) � has LI-resolution from P ∪ {G} starting with the goal
G = {¬p1, . . . ,¬pn}.
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Resolution in Prolog
(1) Interpreter stores clauses as sequences of literals (definite clauses).

An LD-resolution (linear definite) is an LI -resolution in which in each step
the resolvent of the present goal (¬p1, . . . ,¬pi−1,¬pi ,¬pi+1, . . . ,¬pn)
and the side clause (pi ,¬q1, ...,¬qm) is:

(¬p1, ...,¬pi−1,¬q1, ...,¬qm,¬pi+1, ...,¬pn)

Observation Every LI-proof can be transformed into an LD-proof of the
same clause from the same formula with the same starting clause (goal).

(2) The choice of literal from the present goal for resolution is determined
by a given selection rule R. Typically, “choose the first literal”.

An SLD-resolution (selection) via R is an LD-resolution in which each
step (Ci ,Bi ) we resolve through the literal R(Ci ).

Observation Every LD-proof can be transformed into an SLD-proof of the
same clause from the same formula with the same starting clause (goal).
Corollary SLD-resolution is complete for queries over programs in Prolog.
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SLD-tree

Which program clause will be used for resolution with the present goal?

An SLD-tree of a program P and a goal G via a selection rule R is a tree
with nodes labeled by goals so that the root has label G and if a node has
label G ′, his sons correspond to all possibilities of resolving G ′ with
program clauses of P through literal R(G ′) and are labeled by the
corresponding resolvents.

p :− q, r.

(¬q,¬r)

(¬r) (¬t)

(¬p)
p :− s.

r.

s.

?− p.

(¬s,¬r)

(¬s)
q :− s.

q.

s :− t.

(1)

(2)

(3)

(4)

(5)

(6)

(7) (¬r)(¬t,¬r)

(1) (2)

(7)(6)

(6) (7)

(3) (4)

(5)

(5)
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Concluding remarks

Prolog interpreters search the SLD-tree, the order is not specified.

Implementations that are based on DFS may not preserve
completeness.

q :− r.

¬r

¬q
r :− q.

?− q.

q.

(1)

(2)

(3)

¬q

(1)

(2)

(3)

(3)

A certain control over the search is provided by !, the cut operation.

If we allow negation, we may have troubles with semantics of
programs.
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Predicate logic

Deals with statements about objects, their properties and relations.

“She is intelligent and her father knows the rector.” I (x) ∧ K (f (x), r)

x is a variable, representing an object,

r is a constant symbol, representing a particular object,

f is a function symbol, representing a function,

I , K are relation (predicate) symbols, representing relations

(the property of “being intelligent” and the relation “to know”).

“Everybody has a father.” (∀x)(∃y)(y = f (x))

(∀x) is the universal quantifier (for every x),

(∃y) is the existential quantifier (there exists y),

= is a (binary) relation symbol, representing the identity relation.
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Language
A first-order language consists of

variables x , y , z , . . . , x0, x1, . . . (countable many),

the set of all variables is denoted by Var,

function symbols f , g , h, . . . , including constant symbols c, d , . . . ,

which are nullary function symbols,

relation (predicate) symbols P,Q,R, . . . , eventually the symbol =

(equality) as a special relation symbol,

quantifiers (∀x), (∃x) for every variable x ∈ Var,

logical connectives ¬, ∧, ∨, →, ↔
parentheses ( , )

Every function and relation symbol S has an associated arity ar(S) ∈ N.

Remark Compared to propositional logic we have no (explicit)
propositional variables, but they can be introduced as nullary relation
symbols.
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Signatures

Symbols of logic are variables, quantifiers, connectives and
parentheses.

Non-logical symbols are function and relation symbols except the

equality symbol. The equality is (usually) considered separately.

A signature is a pair 〈R,F〉 of disjoint sets of relation and function

symbols with associated arities, whereas none of them is the equality

symbol. A signature lists all non-logical symbols.

A language is determined by a signature L = 〈R,F〉 and by specifying
whether it is a language with equality or not. A language must
contain at least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the

symbol + does not have to represent the standard addition.
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Examples of languages

We describe a language by a list of all non-logical symbols with eventual

clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

L = 〈 〉 is the language of pure equality,

L = 〈ci 〉i∈N is the language of countable many constants,

L = 〈≤〉 is the language of orderings,

L = 〈E 〉 is the language of the graph theory,

L = 〈+,−, 0〉 is the language of the group theory,

L = 〈+,−, ·, 0, 1〉 is the language of the field theory,

L = 〈−,∧,∨, 0, 1〉 is the language of Boolean algebras,

L = 〈S ,+, ·, 0,≤〉 is the language of arithmetic,

where ci , 0, 1 are constant symbols, S , − are unary function symbols,

+, · , ∧, ∨ are binary function symbols, E , ≤ are binary relation symbols.
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Terms

Are expressions representing values of (composed) functions.

Terms of a language L are defined inductively by

1 every variable or constant symbol in L is a term,

2 if f is a function symbol in L of arity n > 0 and t0, . . . , tn−1 are
terms, then also the expression f (t0, . . . , tn−1) is a term,

3 every term is formed by a finite number of steps (i), (ii).

A ground term is a term with no variables.

The set of all terms of a language L is denoted by TermL.

A term that is a part of another term t is called a subterm of t.

The structure of terms can be represented by their formation trees.

For binary function symbols we often use infix notation, e.g.

we write (x + y) instead of +(x , y).
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Examples of terms

x

S(0) + x

S(0)

0

y

(S(0) + x) · y

a) b) y

¬(x ∧ y)

x

x ∧ y

⊥

¬(x ∧ y) ∨ ⊥

a) The formation tree of the term (S(0) + x) · y of the language of
arithmetic.

b) Propositional formulas only with connectives ¬, ∧, ∨, eventually with

constants >, ⊥ can be viewed as terms of the language of Boolean

algebras.
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Atomic formulas

Are the simplest formulas.

An atomic formula of a language L is an expression R(t0, . . . , tn−1)
where

R is an n-ary relation symbol in L and t0, . . . , tn−1 are terms of L.

The set of all atomic formulas of a language L is denoted by AFmL.

The structure of an atomic formula can be represented by a formation

tree from the formation subtrees of its terms.

For binary relation symbols we often use infix notation, e.g.

t1 = t2 instead of =(t1, t2) or t1 ≤ t2 instead of ≤(t1, t2).

Examples of atomic formulas

K (f (x), r), x · y ≤ (S(0) + x) · y , ¬(x ∧ y) ∨ ⊥ = ⊥.
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Formula

Formulas of a language L are defined inductively by

(i) every atomic formula is a formula,

(ii) if ϕ, ψ are formulas, then also the following expressions are formulas

(¬ϕ) , (ϕ ∧ ψ) , (ϕ ∨ ψ) , (ϕ→ ψ) , (ϕ↔ ψ),

(iii) if ϕ is a formula and x is a variable, then also the expressions ((∀x)ϕ)

and ((∃x)ϕ) are formulas.

(iv) every formula is formed by a finite number of steps (i), (ii), (iii).

The set of all formulas of a language L is denoted by FmL.

A formula that is a part of another formula ϕ is called a subformula
of ϕ.

The structure of formulas can be represented by their formation trees.
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Conventions
After introducing priorities for binary function symbols e.g. + , · we
are in infix notation allowed to omit parentheses that are around a
subterm formed by a symbol of higher priority, e.g. x · y + z instead
of (x · y) + z .

After introducing priorities for connectives and quantifiers we are
allowed to omit parentheses that are around subformulas formed by
connectives of higher priority.

(1) →, ↔ (2) ∧, ∨ (3) ¬, (∀x), (∃x)

They can be always omitted around subformulas formed by ¬, (∀x),
(∃x).

We may also omit parentheses in (∀x) and (∃x) for every x ∈ Var.

The outer parentheses may be omitted as well.

(((¬((∀x)R(x))) ∧ ((∃y)P(y)))→ (¬(((∀x)R(x)) ∨ (¬((∃y)P(y))))))

¬∀xR(x) ∧ ∃yP(y)→ ¬(∀xR(x) ∨ ¬∃yP(y))
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An example of a formula

x

S(0) + x

S(0)

0

y

(S(0) + x) · y

x y

x · y

x · y ≤ (S(0) + x) · y

(∀x)(x · y ≤ (S(0) + x) · y)

The formation tree of the formula (∀x)(x · y ≤ (S(0) + x) · y).
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Occurrences of variables
Let ϕ be a formula and x be a variable.

An occurrence of x in ϕ is a leaf labeled by x in its formation tree.

An occurrence of x in ϕ is bound if it is in some subformula ψ that
starts with (∀x) or (∃x). An occurrence of x in ϕ is free if it is not
bound.

A variable x is free in ϕ if it has at least one free occurrence in ϕ.

It is bound in ϕ if it has at least one bound occurrence in ϕ.

A variable x can be both free and bound in ϕ. For example in

(∀x)(∃y)(x ≤ y) ∨ x ≤ z .

We write ϕ(x1, . . . , xn) to denote that x1, . . . , xn are all free variables

in the formula ϕ. (ϕ states something about these variables.)

Remark We will see that the truth value of a formula (in a given
interpretation of symbols) depends only on the assignment of free
variables.
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Open and closed formulas

A formula is open if it is without quantifiers. For the set OFmL of all
open formulas in a language L it holds that AFmL ( OFmL ( FmL.

A formula is closed (a sentence) if it has no free variable; that is, all
occurrences of variables are bound.

A formula can be both open and closed. In this case, all its terms are
ground terms.

x + y ≤ 0 open, ϕ(x , y)

(∀x)(∀y)(x + y ≤ 0) a sentence,

(∀x)(x + y ≤ 0) neither open nor a sentence, ϕ(y)

1 + 0 ≤ 0 open sentence

Remark We will see that in a fixed interpretation of symbols a sentence
has a fixed truth value; that is, it does not depend on the assignment of
variables.
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Instances
After substituting a term t for a free variable x in a formula ϕ, we would
expect that the new formula (newly) says about t “the same” as ϕ did
about x.

ϕ(x) (∃y)(x + y = 1) “there is an element 1− x”

for t = 1 we can ϕ(x/t) (∃y)(1 + y = 1) “there is an element 1− 1”

for t = y we cannot (∃y)(y + y = 1) “1 is divisible by 2”

A term t is substitutable for a variable x in a formula ϕ if substituting
t for all free occurrences of x in ϕ does not introduce a new bound
occurrence of a variable from t.

Then we denote the obtained formula ϕ(x/t) and we call it an
instance of the formula ϕ after a substitution of a term t for a
variable x .

t is not substitutable for x in ϕ if and only if x has a free occurrence
in some subformula that starts with (∀y) or (∃y) for some variable y
in t.

Ground terms are always substitutable.
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Variants

Quantified variables can be (under certain conditions) renamed so that we
obtain an equivalent formula.

Let (Qx)ψ be a subformula of ϕ where Q means ∀ or ∃ and y is a variable

such that the following conditions hold.

1) y is substitutable for x in ψ, and

2) y does not have a free occurrence in ψ.

Then by replacing the subformula (Qx)ψ with (Qy)ψ(x/y) we obtain a
variant of ϕ in subformula (Qx)ψ. After variation of one or more
subformulas in ϕ we obtain a variant of ϕ. For example,

(∃x)(∀y)(x ≤ y) is a formula ϕ,

(∃u)(∀v)(u ≤ v) is a variant of ϕ,

(∃y)(∀y)(y ≤ y) is not a variant of ϕ, 1) does not hold,

(∃x)(∀x)(x ≤ x) is not a variant of ϕ, 2) does not hold.

NAIL062 Propositional & Predicate Logic Lecture 6 November 16, 2020 15 / 33



Table of Contents

1 Basic syntax of predicate logic
Language
Terms
Formula
Open formulas and sentences
Instances and variants

2 Basic semantics of predicate logic
Structures
Truth values
Satisfiability and validity
Theory - semantics
Substructure, expansion, reduct
Boolean algebras

NAIL062 Propositional & Predicate Logic Lecture 6 November 16, 2020 16 / 33



Structures

S = 〈S ,≤〉 is an ordered set where ≤ is reflexive, antisymmetric,
transitive binary relation on S ,

G = 〈V ,E 〉 is an undirected graph without loops where V is the set
of vertices and E is irreflexive, symmetric binary relation on V
(adjacency),

Zp = 〈Zp,+,−, 0〉 is the additive group of integers modulo p,

Q = 〈Q,+,−, ·, 0, 1〉 is the field of rational numbers,

P(X ) = 〈P(X ),−,∩,∪, ∅,X 〉 is the set algebra over X ,

N = 〈N,S ,+, ·, 0,≤〉 is the standard model of arithmetic,

finite automata and other models of computation,

relational databases, . . .
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A structure for a language
Let L = 〈R,F〉 be a signature of a language and A be a nonempty set.

A realization (interpretation) of a relation symbol R ∈ R on A is any

relation RA ⊆ Aar(R). A realization of = on A is the relation IdA
(identity).

A realization (interpretation) of a function symbol f ∈ F on A is any

function f A : Aar(f ) → A. Thus a realization of a constant symbol is

some element of A.

A structure for the language L (L-structure) is a triple A = 〈A,RA,FA〉,
where

A is nonempty set, called the domain of the structure A,

RA = 〈RA | R ∈ R〉 is a collection of realizations of relation symbols,

FA = 〈f A | f ∈ F〉 is a collection of realizations of function symbols.

A structure for the language L is also called a model of the language L.
The class of all models of L is denoted by M(L). Examples for L = 〈≤〉 are

〈N,≤〉, 〈Q, >〉, 〈X ,E 〉, 〈P(X ),⊆〉.
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Value of terms

Let t be a term of L = 〈R,F〉 and A = 〈A,RA,FA〉 be an L-structure.

A variable assignment over the domain A is a function e : Var→ A.

The value tA[e] of the term t in the structure A with respect to the

assignment e is defined by

xA[e] = e(x) for every x ∈ Var,

(f (t0, . . . , tn−1))A[e] = f A(tA0 [e], . . . , tAn−1[e]) for every f ∈ F .

In particular, for a constant symbol c we have cA[e] = cA.

If t is a ground term, its value in A is independent of the assignment
e.

The value of t in A depends only on the assignment of variables in t.

For example, the value of the term x + 1 in the structure N = 〈N,+, 1〉
with respect to the assignment e with e(x) = 2 is (x + 1)N [e] = 3.
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Values of atomic formulas
Let ϕ be an atomic formula of L = 〈R,F〉 in the form R(t0, . . . , tn−1),

A = 〈A,RA,FA〉 be an L-structure, and e be a variable assignment over
A.

The value HA
at(ϕ)[e] of the formula ϕ in the structure A with respect

to e is

HA
at(R(t0, . . . , tn−1))[e] =

{
1 if (tA0 [e], . . . , tAn−1[e]) ∈ RA,

0 otherwise.

where =A is IdA; that is, HA
at(t0 = t1)[e] = 1 if tA0 [e] = tA1 [e], and

HA
at(t0 = t1)[e] = 0 otherwise.

If ϕ is a sentence; that is, all its terms are ground, then its value in A
is independent on the assignment e.

The value of ϕ in A depends only on the assignment of variables in ϕ.

For example, the value of ϕ in form x + 1 ≤ 1 in N = 〈N,+, 1,≤〉 with

respect to the assignment e is HN
at(ϕ)[e] = 1 if and only if e(x) = 0.
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Values of formulas
The value HA(ϕ)[e] of the formula ϕ in the structure A wrt. e is

HA(ϕ)[e] = HA
at(ϕ)[e] if ϕ is atomic,

HA(¬ϕ)[e] = −1(HA(ϕ)[e])

HA(ϕ ∧ ψ)[e] = ∧1(HA(ϕ)[e],HA(ψ)[e])

HA(ϕ ∨ ψ)[e] = ∨1(HA(ϕ)[e],HA(ψ)[e])

HA(ϕ→ ψ)[e] = →1 (HA(ϕ)[e],HA(ψ)[e])

HA(ϕ↔ ψ)[e] = ↔1 (HA(ϕ)[e],HA(ψ)[e])

HA((∀x)ϕ)[e] = min
a∈A

(HA(ϕ)[e(x/a)])

HA((∃x)ϕ)[e] = max
a∈A

(HA(ϕ)[e(x/a)])

where −1, ∧1, ∨1, →1, ↔1 are the Boolean functions given by the tables
and e(x/a) for a ∈ A denotes the assignment obtained from e by setting
e(x) = a.

Observation HA(ϕ)[e] depends only on assignment of free variables in ϕ.
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Satisfiability with respect to assignments

The structure A satisfies the formula ϕ with assignment e if HA(ϕ)[e] = 1.
Then we write A |= ϕ[e], and A 6|= ϕ[e] otherwise. It holds that

A |= ¬ϕ[e] ⇔ A 6|= ϕ[e]

A |= (ϕ ∧ ψ)[e] ⇔ A |= ϕ[e] and A |= ψ[e]

A |= (ϕ ∨ ψ)[e] ⇔ A |= ϕ[e] or A |= ψ[e]

A |= (ϕ→ ψ)[e] ⇔ A |= ϕ[e] implies A |= ψ[e]

A |= (ϕ↔ ψ)[e] ⇔ A |= ϕ[e] if and only if A |= ψ[e]

A |= (∀x)ϕ[e] ⇔ A |= ϕ[e(x/a)] for every a ∈ A

A |= (∃x)ϕ[e] ⇔ A |= ϕ[e(x/a)] for some a ∈ A

Observation Let term t be substitutable for x in ϕ and ψ be a variant of
ϕ. Then for every structure A and assignment e

1 A |= ϕ(x/t)[e] if and only if A |= ϕ[e(x/a)] where a = tA[e],

2 A |= ϕ[e] if and only if A |= ψ[e].
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Validity in a structure
Let ϕ be a formula of a language L and A be an L-structure.

ϕ is valid (true) in the structure A, denoted by A |= ϕ, if A |= ϕ[e]
for every e : Var→ A. We say that A satisfies ϕ. Otherwise, we write
A 6|= ϕ.

ϕ is contradictory in A if A |= ¬ϕ; that is, A 6|= ϕ[e] for every
e : Var→ A.

For every formulas ϕ, ψ, variable x , and structure A
(1) A |= ϕ ⇒ A 6|= ¬ϕ
(2) A |= ϕ ∧ ψ ⇔ A |= ϕ and A |= ψ

(3) A |= ϕ ∨ ψ ⇐ A |= ϕ or A |= ψ

(4) A |= ϕ ⇔ A |= (∀x)ϕ

If ϕ is a sentence, it is valid or contradictory in A, and thus (1) holds
also in ⇐. If moreover ψ is a sentence, also (3) holds in ⇒.

By (4), A |= ϕ if and only if A |= ψ where ψ is a universal closure of
ϕ, i.e. a formula (∀x1) · · · (∀xn)ϕ where x1, . . . , xn are all free
variables in ϕ.
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Validity in a theory
A theory of language L is any set T of formulas of L (so called
axioms).

A model of a theory T is an L-structure A such that A |= ϕ for every

ϕ ∈ T . Then we write A |= T and we say that A satisfies T .

The class of models of a theory T is M(T ) = {A ∈ M(L) | A |= T}.
A formula ϕ is valid in T (true in T ), denoted by T |= ϕ, if A |= ϕ

for every model A of T . Otherwise, we write T 6|= ϕ.

ϕ is contradictory in T if T |= ¬ϕ, i.e. ϕ is contradictory in all
models of T .

ϕ is independent in T if it is neither valid nor contradictory in T .

If T = ∅, we have M(T ) = M(L) and we omit T , eventually we say

“in logic”. Then |= ϕ means that ϕ is (universally) valid (a
tautology).

A consequence of T is the set θL(T ) of all sentences of L valid in T ,
i.e. θL(T ) = {ϕ ∈ FmL | T |= ϕ and ϕ is a sentence}.

NAIL062 Propositional & Predicate Logic Lecture 6 November 16, 2020 24 / 33



Example of a theory
A theory of orderings T in language L = 〈≤〉 with equality has axioms

x ≤ x (reflexivity)

x ≤ y ∧ y ≤ x → x = y (antisymmetry)

x ≤ y ∧ y ≤ z → x ≤ z (transitivity)

Models of T are L-structures 〈S ,≤S〉, so called ordered sets, that satisfy
the axioms of T , for example A = 〈N,≤〉 or B = 〈P(X ),⊆〉 for
X = {0, 1, 2}.

A formula ϕ : x ≤ y ∨ y ≤ x is valid in A but not in B since B 6|= ϕ[e]
for the assignment e(x) = {0}, e(y) = {1}, thus ϕ is independent in
T .

A sentence ψ : (∃x)(∀y)(y ≤ x) is valid in B and contradictory in A,
hence it is independent in T as well. We write B |= ψ, A |= ¬ψ.

A formula χ : (x ≤ y ∧ y ≤ z ∧ z ≤ x)→ (x = y ∧ y = z) is valid in
T , denoted by T |= χ, the same holds for its universal closure.
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Properties of theories
A theory T of a language L is (semantically)

inconsistent if T |= ⊥, otherwise T is consistent (satisfiable),

complete if it is consistent and every sentence of L is valid in T or

contradictory in T ,

an extension of a theory T ′ of language L′ if L′ ⊆ L and
θL

′
(T ′) ⊆ θL(T ), we say that an extension T of a theory T ′ is simple

if L = L′; and conservative if θL
′
(T ′) = θL(T ) ∩ FmL′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa,

Structures A, B for a language L are elementarily equivalent, denoted by

A ≡ B, if they satisfy the same sentences of L.

Observation Let T and T ′ be theories of a language L. T is
(semantically)

(1) consistent if and only if it has a model,
(2) complete iff it has a single model, up to elementarily equivalence,
(3) an extension of T ′ if and only if M(T ) ⊆ M(T ′),
(4) equivalent with T ′ if and only if M(T ) = M(T ′).
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Unsatisfiability and validity
The problem of validity in a theory can be transformed to the problem of
satisfiability of (another) theory.

Proposition For every theory T and sentence ϕ (of the same language)

T ,¬ϕ is unsatisfiable ⇔ T |= ϕ.

Proof By definitions, it is equivalent that

(1) T ,¬ϕ is unsatisfiable (i.e. it has no model),

(2) ¬ϕ is not valid in any model of T ,

(3) ϕ is valid in every model of T ,

(4) T |= ϕ.

Remark The assumption that ϕ is a sentence is necessary for (2)⇒ (3).

For example, the theory {P(c),¬P(x)} is unsatisfiable, but P(c) 6|= P(x),
where P is a unary relation symbol and c is a constant symbol.
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Substructures
Let A = 〈A,RA,FA〉 and B = 〈B,RB ,FB〉 be structures for L = 〈R,F〉.
We say that B is an (induced) substructure of A, denoted by B ⊆ A, if

(i) B ⊆ A,

(ii) RB = RA ∩ Bar(R) for every R ∈ R,

(iii) f B = f A ∩ (Bar(f ) × B); that is, f B = f A � Bar(f ), for every f ∈ F .

A set C ⊆ A is a domain of some substructure of A if and only if C is
closed under all functions of A. Then the respective substructure, denoted
by A � C , is said to be the restriction of the structure A to C .

A set C ⊆ A is closed under a function f : An → A if
f (x0, . . . , xn−1) ∈ C

for every x0, . . . , xn−1 ∈ C .

Example: Z = 〈Z,+, ·, 0〉 is a substructure of Q = 〈Q,+, ·, 0〉 and
Z = Q � Z. Furthermore, N = 〈N,+, ·, 0〉 is their substructure and
N = Q � N = Z � N.
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Validity in a substructure

Let B be a substructure of a structure A for a (fixed) language L.

Proposition For every open formula ϕ and assignment e : Var→ B,

A |= ϕ[e] if and only if B |= ϕ[e].

Proof For atomic ϕ it follows from the definition of the truth value with
respect to an assignment. Otherwise by induction on the structure of the
formula.
Corollary For every open formula ϕ and structure A,

A |= ϕ if and only if B |= ϕ for every substructure B ⊆ A.

A theory T is open if all axioms of T are open.

Corollary Every substr. of a model of an open theory T is a model of T .
For example, every substructure of a graph, i.e. a model of theory of
graphs, is a graph, called a subgraph. Similarly subgroups, Boolean
subalgebras, etc.
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Generated substructure, expansion, reduct

Let A = 〈A,RA,FA〉 be a structure and X ⊆ A. Let B be the smallest
subset of A containing X that is closed under all functions of the structure
A (including constants). Then the structure A � B is denoted by A〈X 〉
and is called the substructure of A generated by the set X .

Example: for Q = 〈Q,+, ·, 0〉, Z = 〈Z,+, ·, 0〉, N = 〈N,+, ·, 0〉 it is
Q〈{1}〉 = N, Q〈{−1}〉 = Z, and Q〈{2}〉 is the substructure on all even
natural numbers.

Let A be a structure for a language L and L′ ⊆ L. By omitting realizations
of symbols that are not in L′ we obtain from A a structure A′ called the
reduct of A to the language L′. Conversely, A is an expansion of A′ into
L.

For example, 〈N,+〉 is a reduct of 〈N,+, ·, 0〉. On the other hand, the
structure 〈N,+, ci 〉i∈N with ci = i for every i ∈ N is the expansion of
〈N,+〉 by names of elements from N.
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Theorem on constants

Theorem Let ϕ be a formula in a language L with free variables x1, . . . , xn
and let T be a theory in L. Let L′ be the extension of L with new constant
symbols c1, . . . , cn and let T ′ denote the theory T in L′. Then

T |= ϕ if and only if T ′ |= ϕ(x1/c1, . . . , xn/cn).

Proof (⇒) If A′ is a model of T ′, let A be the reduct of A′ to L. Since

A |= ϕ[e] for every assignment e, we have in particular

A |= ϕ[e(x1/c
A′
1 , . . . , xn/c

A′
n )], i.e. A′ |= ϕ(x1/c1, . . . , xn/cn).

(⇐) If A is a model of T and e an assignment, let A′ be the expansion of
A into L′ by setting cA

′
i = e(xi ) for every i . Since

A′ |= ϕ(x1/c1, . . . , xn/cn)[e ′] for every assignment e ′, we have

A′ |= ϕ[e(x1/c
A′
1 , . . . , xn/c

A′
n )], i.e. A |= ϕ[e].
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Boolean algebras
The theory of Boolean algebras has the language L = 〈−,∧,∨, 0, 1〉 with

equality and the following axioms.
x ∧ (y ∧ z) = (x ∧ y) ∧ z (asociativity of ∧)

x ∨ (y ∨ z) = (x ∨ y) ∨ z (asociativity of ∨)

x ∧ y = y ∧ x (commutativity of ∧)

x ∨ y = y ∨ x (commutativity of ∨)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributivity of ∧ over ∨)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (distributivity of ∨ over ∧)

x ∧ (x ∨ y) = x , x ∨ (x ∧ y) = x (absorption)

x ∨ (−x) = 1, x ∧ (−x) = 0 (complementation)

0 6= 1 (non-triviality)

The smallest model is 2 = 〈2,−1,∧1,∨1, 0, 1〉. Finite Boolean algebras are

(up to isomorphism) exactly n2 = 〈n2,−n,∧n,∨n, 0n, 1n〉 for n ∈ N+,
where the operations (on binary n-tuples) are the coordinate-wise
operations of 2.
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Relations of propositional and predicate logic

Propositional formulas over connectives ¬, ∧, ∨ (eventually with >,
⊥) can be viewed as Boolean terms. Then the truth value of ϕ in a
given assignment is the value of the term in the Boolean algebra 2.

Lindenbaum-Tarski algebra over P is Boolean algebra (also for P
infinite).

If we represent atomic subformulas in an open formula ϕ (without
equality) with propositional letters, we obtain a proposition that is
valid if and only if ϕ is valid.

Propositional logic can be introduced as a fragment of predicate logic
using nullary relation symbols (syntax) and nullary relations
(semantics) since A0 = {∅} = 1, so RA ⊆ A0 is either RA = ∅ = 0 or
RA = {∅} = 1.
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Substructures
Let A = 〈A,RA,FA〉 and B = 〈B,RB ,FB〉 be structures for L = 〈R,F〉.
We say that B is an (induced) substructure of A, denoted by B ⊆ A, if

(i) B ⊆ A,

(ii) RB = RA ∩ Bar(R) for every R ∈ R,

(iii) f B = f A ∩ (Bar(f ) × B); that is, f B = f A � Bar(f ), for every f ∈ F .

A set C ⊆ A is a domain of some substructure of A if and only if C is
closed under all functions of A. Then the respective substructure, denoted
by A � C , is said to be the restriction of the structure A to C .

A set C ⊆ A is closed under a function f : An → A if
f (x0, . . . , xn−1) ∈ C

for every x0, . . . , xn−1 ∈ C .

Example: Z = 〈Z,+, ·, 0〉 is a substructure of Q = 〈Q,+, ·, 0〉 and
Z = Q � Z. Furthermore, N = 〈N,+, ·, 0〉 is their substructure and
N = Q � N = Z � N.
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Validity in a substructure

Let B be a substructure of a structure A for a (fixed) language L.

Proposition For every open formula ϕ and assignment e : Var→ B,

A |= ϕ[e] if and only if B |= ϕ[e].

Proof For atomic ϕ it follows from the definition of the truth value with
respect to an assignment. Otherwise by induction on the structure of the
formula.
Corollary For every open formula ϕ and structure A,

A |= ϕ if and only if B |= ϕ for every substructure B ⊆ A.

A theory T is open if all axioms of T are open.

Corollary Every substr. of a model of an open theory T is a model of T .
For example, every substructure of a graph, i.e. a model of theory of
graphs, is a graph, called a subgraph. Similarly subgroups, Boolean
subalgebras, etc.
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Generated substructure, expansion, reduct

Let A = 〈A,RA,FA〉 be a structure and X ⊆ A. Let B be the smallest
subset of A containing X that is closed under all functions of the structure
A (including constants). Then the structure A � B is denoted by A〈X 〉
and is called the substructure of A generated by the set X .

Example: for Q = 〈Q,+, ·, 0〉, Z = 〈Z,+, ·, 0〉, N = 〈N,+, ·, 0〉 it is
Q〈{1}〉 = N, Q〈{−1}〉 = Z, and Q〈{2}〉 is the substructure on all even
natural numbers.

Let A be a structure for a language L and L′ ⊆ L. By omitting realizations
of symbols that are not in L′ we obtain from A a structure A′ called the
reduct of A to the language L′. Conversely, A is an expansion of A′ into
L.

For example, 〈N,+〉 is a reduct of 〈N,+, ·, 0〉. On the other hand, the
structure 〈N,+, ci 〉i∈N with ci = i for every i ∈ N is the expansion of
〈N,+〉 by names of elements from N.
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Theorem on constants

Theorem Let ϕ be a formula in a language L with free variables x1, . . . , xn
and let T be a theory in L. Let L′ be the extension of L with new constant
symbols c1, . . . , cn and let T ′ denote the theory T in L′. Then

T |= ϕ if and only if T ′ |= ϕ(x1/c1, . . . , xn/cn).

Proof (⇒) If A′ is a model of T ′, let A be the reduct of A′ to L. Since

A |= ϕ[e] for every assignment e, we have in particular

A |= ϕ[e(x1/c
A′
1 , . . . , xn/c

A′
n )], i.e. A′ |= ϕ(x1/c1, . . . , xn/cn).

(⇐) If A is a model of T and e an assignment, let A′ be the expansion of
A into L′ by setting cA

′
i = e(xi ) for every i . Since

A′ |= ϕ(x1/c1, . . . , xn/cn)[e ′] for every assignment e ′, we have

A′ |= ϕ[e(x1/c
A′
1 , . . . , xn/c

A′
n )], i.e. A |= ϕ[e].
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Boolean algebras
The theory of Boolean algebras has the language L = 〈−,∧,∨, 0, 1〉 with

equality and the following axioms.
x ∧ (y ∧ z) = (x ∧ y) ∧ z (asociativity of ∧)

x ∨ (y ∨ z) = (x ∨ y) ∨ z (asociativity of ∨)

x ∧ y = y ∧ x (commutativity of ∧)

x ∨ y = y ∨ x (commutativity of ∨)

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distributivity of ∧ over ∨)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (distributivity of ∨ over ∧)

x ∧ (x ∨ y) = x , x ∨ (x ∧ y) = x (absorption)

x ∨ (−x) = 1, x ∧ (−x) = 0 (complementation)

0 6= 1 (non-triviality)

The smallest model is 2 = 〈2,−1,∧1,∨1, 0, 1〉. Finite Boolean algebras are

(up to isomorphism) exactly n2 = 〈n2,−n,∧n,∨n, 0n, 1n〉 for n ∈ N+,
where the operations (on binary n-tuples) are the coordinate-wise
operations of 2.

NAIL062 Propositional & Predicate Logic Lecture 6 November 23, 2020 6 / 41



Relations of propositional and predicate logic

Propositional formulas over connectives ¬, ∧, ∨ (eventually with >,
⊥) can be viewed as Boolean terms. Then the truth value of ϕ in a
given assignment is the value of the term in the Boolean algebra 2.

Lindenbaum-Tarski algebra over P is Boolean algebra (also for P
infinite).

If we represent atomic subformulas in an open formula ϕ (without
equality) with propositional letters, we obtain a proposition that is
valid if and only if ϕ is valid.

Propositional logic can be introduced as a fragment of predicate logic
using nullary relation symbols (syntax) and nullary relations
(semantics) since A0 = {∅} = 1, so RA ⊆ A0 is either RA = ∅ = 0 or
RA = {∅} = 1.
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Definable sets
Which sets [or relations] can be defined by [first-order] properties in a
given structure?

The set defined by a formula ϕ(x1, . . . , xn) in the structure A is

ϕA(x1, . . . , xn) = {(a1, . . . , an) ∈ An | A |= ϕ[e(x1/a1, . . . , xn/an)]}

For brevity, we write ϕA(x̄) = {ā ∈ A|x̄ | | A |= ϕ[e(x̄/ā)]} where
|x̄ | = n.

The set defined by ϕ(x̄ , ȳ) with parameters b̄ ∈ A|ȳ | in A is

ϕA,b̄(x̄ , ȳ) = {ā ∈ A|x̄ | | A |= ϕ[e(x̄/ā, ȳ/b̄)]}

E.g. for ϕ = E (x , y), ϕG,b(x , y) is the set of all neighbours of the
vertex b in the graph G.

Given a structure A, a set B ⊆ A and n ∈ N, we denote by Dfm(A,B)
the set of all relations D ⊆ An definable in A with parameters from B

Observation Dfm(A,B) is closed under complement, union, intersection,
and contains ∅,An, i.e., it is a subalgebra of the set algebra P(An).
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Application: Database queries

title director year

Avengers: Endgame Russo 2019
Avatar Cameron 2009
Titanic Cameron 1997
. . .

Table 1: Movies

cinema title time

Atlas Avengers: Endgame 19:30
Světozor Avengers: Endgame 18:30
Světozor Titanic 21:00
. . .

Table 2: Program

Where and when can I see a Cameron movie?
SELECT Program.cinema, Program.time FROM Movies, Pogram

WHERE Movies.title = Program.title AND director = ’Cameron’;

This is equivalent to ϕD(xcin, xtime) where

ϕ(xcin, xtime) = (∃xtitle)(∃xyear )(M(xtitle , cCameron, xyear )∧P(xcin, xtitle , xtime))

in the structure D = 〈D,MD ,PD , {cd | d ∈ D}〉 where
D = {‘Avengers: Endgame’, ‘Russo’, ‘2019’, ‘Avatar’,. . . ,‘21:00’}, MD

and PD are given by rows of the tables, and cDd = d for all d ∈ D.
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Tableau method in propositional logic - a review
A tableau is a binary tree that represents a search for a
counterexample.

Nodes are labeled by entries, i.e. formulas with a sign T / F that
represents an assumption that the formula is true / false in some
model.

If this assumption is correct, then it is correct also for all the entries
in some branch below that came from this entry.

A branch is contradictory (it fails) if it contains Tψ, Fψ for some ψ.

A proof of formula ϕ is a contradictory tableau with root Fϕ, i.e. a
tableau in which every branch is contradictory. If ϕ has a proof, it is
valid.

If a counterexample exists, there will be a branch in a finished tableau
that provides us with this counterexample, but this branch can be
infinite.

We can construct a systematic tableau that is always finished.

If ϕ is valid, the systematic tableau for ϕ is contradictory, i.e. it is a
proof of ϕ; and in this case, it is also finite.
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Tableau method in propositional logic - examples

F ((¬q ∨ p)→ p)F (((p→ q)→ p)→ p)

T ((p→ q)→ p)

Fp

F (p→ q) Tp

Tp

Fq

⊗

⊗

T (¬q ∨ p)

Fp

Tp

Fq ⊗

T (¬q)

a) A tableau proof of the formula ((p → q)→ p)→ p.

b) A finished tableau for (¬q ∨ p)→ p. The left branch provides us with

a counterexample v(p) = v(q) = 0.
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Tableau method in predicate logic - what is different

Formulas in entries will always be sentences (closed formulas), i.e.
formulas without free variables.

We add new atomic tableaux for quantifiers.

In these tableaux we substitute ground terms for quantified variables
following certain rules.

We extend the language by new (auxiliary) constant symbols
(countably many) to represent “witnesses” of entries T (∃x)ϕ(x) and
F (∀x)ϕ(x).

In a finished noncontradictory branch containing an entry T (∀x)ϕ(x)
or F (∃x)ϕ(x) we have instances Tϕ(x/t) resp. Fϕ(x/t) for every
ground term t (of the extended language).
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Assumptions
1) The formula ϕ that we want to prove (or refute) is a sentence. If not,

we replace ϕ with its universal closure ϕ′, since for every theory T ,

T |= ϕ if and only if T |= ϕ′.

2) We prove from a theory in a closed form, i.e. every axiom is a
sentence.

By replacing every axiom ψ with its universal closure ψ′ we obtain an
equivalent theory as for every structure A (of the given language L),

A |= ψ if and only if A |= ψ′.

3) The language L is countable. Then every theory of L is countable.

We denote by LC the extension of L by new constant symbols
c0, c1, . . . (countably many). Then there are countable many ground
terms of LC .

Let ti denote the i-th ground term (in some fixed enumeration).

4) First, we assume that the language is without equality.
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Tableaux in predicate logic - examples

F ((∃x)¬P (x)→ ¬(∀x)P (x))

T (∃x)¬P (x)

F (¬(∀x)P (x))

T (¬P (c))

⊗

T (∀x)P (x)

FP (c)

TP (c)

F (¬(∀x)P (x)→ (∃x)¬P (x))

F (∃x)¬P (x)

T (¬(∀x)P (x))

F (∃x)¬P (x)

F (¬P (d))

⊗

F (∀x)P (x)

FP (d)

TP (d)

c new d new

T (∀x)P (x)
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Atomic tableaux - original

An atomic tableau is one of the following trees (labeled by entries), where

α is any atomic sentence and ϕ, ψ are any sentences, all of language LC .

Tα Fα

T (¬ϕ)

Fϕ

F (¬ϕ)

Tϕ

T (ϕ ∧ ψ)

Tϕ

Tψ

F (ϕ ∧ ψ)

Fϕ Fψ

T (ϕ ∨ ψ)

Tϕ Tψ

F (ϕ ∨ ψ)

Fϕ

Fψ

T (ϕ→ ψ)

Fϕ Tψ

F (ϕ→ ψ)

Tϕ

Fψ

T (ϕ↔ ψ)

Tϕ

Tψ

Fϕ

Fψ

F (ϕ↔ ψ)

Tϕ

Fψ

Fϕ

Tψ
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Atomic tableaux - new

Atomic tableaux are also the following trees (labeled by entries), where ϕ
is any formula of the language LC with a free variable x , t is any ground
term of LC and c is a new constant symbol from LC \ L.

T (∃x)ϕ(x)

Tϕ(x/c)

for a new

constant c

F (∀x)ϕ(x)

Fϕ(x/c)

for a new

constant c

T (∀x)ϕ(x)

Tϕ(x/t)

for any ground

term t of LC

F (∃x)ϕ(x)

Fϕ(x/t)

for any ground

term t of LC

∗ ∗] ]

Remark The constant symbol c represents a “witness” of the entry
T (∃x)ϕ(x) or F (∀x)ϕ(x). Since we need that no prior demands are put
on c, we specify (in the definition of a tableau) which constant symbols c
may be used.
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Tableau
A finite tableau from a theory T is a binary tree labeled with entries
described

(i) every atomic tableau is a finite tableau from T , whereas in case (∗)
we may use any constant symbol c ∈ LC \ L,

(ii) if E is an entry on a branch B in a finite tableau from T , then by
adjoining the atomic tableau for E at the end of branch B we obtain
(again) a finite tableau from T , whereas in case (∗) we may use only
a constant symbol c ∈ LC \ L that does not appear on B,

(iii) if B is a branch in a finite tableau from T and ϕ ∈ T , then by
adjoining Tϕ at the end of branch B we obtain (again) a finite
tableau from T .

(iv) every finite tableau from T is formed by finitely many steps (i), (ii),
(iii).

A tableau from T is a sequence τ0, τ1, . . . , τn, . . . of finite tableaux from
T such that τn+1 is formed from τn by (ii) or (iii), formally τ = ∪τn.
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Construction of tableaux

F ((∃x)¬P (x)→ ¬(∀x)P (x))

T (∃x)¬P (x)

F (¬(∀x)P (x))

T (∃x)¬P (x)

T (¬P (c))

⊗

F (¬(∀x)P (x))

T (∀x)P (x)

T (¬P (c))

FP (c)

TP (c)

T (∀x)P (x)

F (¬(∀x)P (x)→ (∃x)¬P (x))

F (∃x)¬P (x)

T (¬(∀x)P (x))

F (∃x)¬P (x)

F (¬P (d))

⊗

F (∀x)P (x)

FP (d)

TP (d)

T (¬(∀x)P (x))

F (∀x)P (x)

F (¬P (d))

c new d new

T (¬P (c))

t = c

choose

choose

t = d
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Convention

F ((∃x)¬P (x)→ ¬(∀x)P (x))

T (∃x)¬P (x)

F (¬(∀x)P (x))

T (¬P (c))

⊗

T (∀x)P (x)

FP (c)

TP (c)

F (¬(∀x)P (x)→ (∃x)¬P (x))

F (∃x)¬P (x)

T (¬(∀x)P (x))

F (∃x)¬P (x)

F (¬P (d))

⊗

F (∀x)P (x)

FP (d)

TP (d)

c new d new

T (∀x)P (x)

We will not write the entry that is expanded again on the branch, except
in cases when the entry is in the form of T (∀x)ϕ(x) or F (∃x)ϕ(x).
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Tableau proof

A branch B in a tableau τ is contradictory if it contains entries Tϕ
and Fϕ for some sentence ϕ, otherwise B is noncontradictory.

A tableau τ is contradictory if every branch in τ is contradictory.

A tableau proof (proof by tableau) of a sentence ϕ from a theory T is
a contradictory tableau from T with Fϕ in the root.

A sentence ϕ is (tableau) provable from T , denoted by T ` ϕ, if it
has a tableau proof from T .

A refutation of a sentence ϕ by tableau from a theory T is a
contradictory tableau from T with the root entry Tϕ.

A sentence ϕ is (tableau) refutable from T if it has a refutation by
tableau from T , i.e. T ` ¬ϕ.
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Examples

F ((∀x)(P (x)→ Q(x))→ ((∀x)P (x)→ (∀x)Q(x))

F (∀x)Q(x)

⊗

TP (c)

FQ(c)

TQ(c)

T (∀x)P (x)

c new

T (∀x)(P (x)→ Q(x))

F ((∀x)P (x)→ (∀x)Q(x))

T (∀x)P (x)

T (∀x)(P (x)→ Q(x))

T (P (c)→ Q(c))

⊗

FP (c)

F ((∀x)(ϕ(x) ∧ ψ(x))↔ ((∀x)ϕ(x) ∧ (∀x)ψ(x)))

T ((∀x)(ϕ(x) ∧ ψ(x))) F ((∀x)(ϕ(x) ∧ ψ(x)))

F ((∀x)ϕ(x) ∧ (∀x)ψ(x)) T ((∀x)ϕ(x) ∧ (∀x)ψ(x))

T (∀x)ϕ(x)

T (∀x)ψ(x)

F (ϕ(e) ∧ ψ(e))

Fϕ(e) Fψ(e)

T (∀x)ϕ(x) T (∀x)ψ(x)

Tϕ(e) Tψ(e)

⊗ ⊗

F (∀x)ϕ(x) F (∀x)ψ(x)

Fϕ(c) Fψ(d)

T ((∀x)(ϕ(x) ∧ ψ(x))) T ((∀x)(ϕ(x) ∧ ψ(x)))

T (ϕ(c) ∧ ψ(c)) T (ϕ(d) ∧ ψ(d))

Tϕ(c)

Tψ(c)

Tϕ(d)

Tψ(d)

⊗⊗

c new d new

e new
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Finished tableau
A finished noncontradictory branch should provide us with a
counterexample.

An occurrence of an entry E in a node B of a tableau τ is i -th if B has
exactly i − 1 predecessors labeled by E ; and is reduced on a branch B
through B if

a) E is neither in form of T (∀x)ϕ(x) nor F (∃x)ϕ(x) and E occurs on B
as a root of an atomic tableau, i.e. it was already expanded on B, or

b) E is in form of T (∀x)ϕ(x) or F (∃x)ϕ(x), E has an (i + 1)-th
occurrence on B, and B contains an entry Tϕ(x/ti ) resp. Fϕ(x/ti )
where ti is the i-th ground term (of the language LC ).

Let B be a branch in a tableau τ from a theory T . We say that

B is finished if it is contradictory, or every occurrence of an entry on
B is reduced on B and, moreover, B contains Tϕ for every ϕ ∈ T ,

τ is finished if every branch in τ is finished.
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Systematic tableau - construction
Let R be an entry and T = {ϕ0, ϕ1, . . . } be a (possibly infinite) theory.

(1) We take the atomic tableau for R as τ0. In case (∗) we choose any
c ∈ LC \ L, in case (]) we take t1 for t. Proceed as follows:

(2) Let B be the leftmost node in the smallest possible level in τn
containing an occurrence of an entry E that is not reduced on some
noncontradictory branch through B. (If B doesn’t exist, set τ ′n = τn.)

(3a) If E is neither T (∀x)ϕ(x) nor F (∃x)ϕ(x), let τ ′n be the tableau
obtained from τn by adjoining the atomic tableau for E to every
noncontr. branch through B. In case (∗), choose ci with smallest i .

(3b) If E is T (∀x)ϕ(x) or F (∃x)ϕ(x) and it has i-th occurrence in B, let
τ ′n be the tableau obtained from τn by adjoining atomic tableau for E
to every noncontr. branch through B, where we take the term ti for t.

(4) Let τn+1 be the tableau obtained from τ ′n by adjoining Tϕn to every
noncontradictory branch that does not contain Tϕn yet. (If ϕn does
not exist, we take τn+1 = τ ′n.)

The systematic tableau for R from T is the result of this process: τ = ∪τn
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Systematic tableau - an example

T ((∃y)(¬R(y, y) ∨ P (y, y)) ∧ (∀x)R(x, x))

T (∃y)(¬R(y, y) ∨ P (y, y))

T (∀x)R(x, x)

T (¬R(c0, c0) ∨ P (c0, c0)) c0 new

T (∀x)R(x, x)

TR(c0, c0) (assuming that t1 = c0)

T (¬R(c0, c0)) TP (c0, c0)

⊗

T (∀x)R(x, x)

TR(t2, t2)

T (∀x)R(x, x)

TR(t3, t3)

FR(c0, c0)

T (∀x)R(x, x)

TR(t2, t2)
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Systematic tableau - being finished
Proposition Every systematic tableau is finished.

Proof Let τ = ∪τn be a systematic tableau from T = {ϕ0, ϕ1, . . . } with
root R and let E be an entry in a node B of the tableau τ .

There are only finitely many entries in τ in levels up to the level of B.

If the occurrence of E in B was unreduced on some noncontradictory
branch in τ , it would be found in some step (2) and reduced by (3a),
(3b).

By step (4) every ϕn ∈ T will be (no later than) in τn+1 on every
noncontradictory branch.

Hence the systematic tableau τ has all branches finished.

Proposition If a systematic tableau τ is a proof (from a theory T), it is
finite.

Proof Suppose that τ is infinite. Then by König’s lemma, τ contains an
infinite branch. This branch is noncontradictory since in the construction
only noncontradictory branches are prolonged. But this contradicts the
assumption that τ is a contradictory tableau.
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Equality

Axioms of equality for a language L with equality are

(i) x = x

(ii) x1 = y1 ∧ · · · ∧ xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn)

for each n-ary function symbol f of the language L.

(iii) x1 = y1 ∧ · · · ∧ xn = yn → (R(x1, . . . , xn)→ R(y1, . . . , yn))

for each n-ary relation symbol R of the language L including =.

A tableau proof from a theory T in a language L with equality is a tableau

proof from T ∗ where T ∗ denotes the extension of T by adding axioms of

equality for L (resp. their universal closures).

Remark In context of logic programming the equality often has other
meaning than in mathematics (identity). For example in Prolog, t1 = t2

means that t1 and t2 are unifiable.
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Congruence and quotient structure
An equivalence ∼ on A, f : An → A, and R ⊆ An, where n ∈ N, is:

a congruence for the function f if for every x1, . . . , xn, y1, . . . , yn ∈ A

x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ⇒ f (x1, . . . , xn) ∼ f (y1, . . . , yn),

a congruence for the relation R if for every x1, . . . , xn, y1, . . . , yn ∈ A

x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ⇒ (R(x1, . . . , xn)⇔ R(y1, . . . , yn)).

Let an equivalence ∼ on A be a congruence for every function and relation
in a structure A = 〈A,FA,RA〉 of language L = 〈F ,R〉. The quotient
(structure) of A by ∼ is the structure A/∼ = 〈A/∼,FA/∼,RA/∼〉 where

f A/∼([x1]∼, . . . , [xn]∼) = [f A(x1, . . . , xn)]∼

RA/∼([x1]∼, . . . , [xn]∼)⇔ RA(x1, . . . , xn)

for each f ∈ F , R ∈ R, and x1, . . . , xn ∈ A, i.e. the functions and
relations are defined from A using representatives.

Example: Zp is the quotient of Z = 〈Z,+,−, 0〉 by the congruence
modulo E .
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Role of axioms of equality

Let A be a structure of a language L in which the equality is interpreted as
a relation =A satisfying the axioms of equality for L, i.e. not necessarily
the identity relation.

1) From axioms (i) and (iii) it follows that the relation =A is an
equivalence.

2) Axioms (ii) and (iii) express that the relation =A is a congruence for
every function and relation in A.

3) If A |= T ∗ then also (A/=A) |= T ∗ where A/=A is the quotient of A
by =A. Moreover, the equality is interpreted in A/=A as the identity
relation.

On the other hand, in every model in which the equality is interpreted as
the identity relation, all axioms of equality evidently hold.
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Soundness
We say that a model A agrees with an entry E , if E is Tϕ and A |= ϕ or
if E is Fϕ and A |= ¬ϕ, i.e. A 6|= ϕ. Moreover, A agrees with a branch B
if A agrees with every entry on B.

Lemma Let A be a model of a theory T of a language L that agrees with
the root entry R in a tableau τ = ∪τn from T. Then A can be expanded
to the language LC so that it agrees with some branch B in τ .

Remark It suffices to expand A only by constants cA such that c ∈ LC \ L
occurs on B, other constants may be defined arbitrarily.

Proof By induction on n we find a branch Bn in τn and an expansion An

of A by constants cA for all c ∈ LC \ L on Bn s.t. An agrees with Bn and
Bn−1 ⊆ Bn. Assume we have a branch Bn in τn and an expansion An that
agrees with Bn.

If τn+1 is formed from τn without extending the branch Bn, we take
Bn+1 = Bn and An+1 = An.
If τn+1 is formed from τn by appending Tϕ to Bn for some ϕ ∈ T , let
Bn+1 be this branch and An+1 = An. Since A |= ϕ, An+1 agrees
with Bn+1.
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Soundness - proof (cont.)
Otherwise τn+1 is formed from τn by appending an atomic tableau to
Bn for some entry E on Bn. By induction we know that An agrees
with E .

(i) If E is formed by a logical connective, we take An+1 = An and verify
that Bn can always be extended to a branch Bn+1 agreeing with An+1.

(ii) If E is in form T (∀x)ϕ(x), let Bn+1 be the (unique) extension of Bn

to a branch in τn+1, i.e. by the entry Tϕ(x/t). Let An+1 be any
expansion of by new constants from t. Since An |= (∀x)ϕ(x), we
have An+1 |= ϕ(x/t). Analogously for E in form F (∃x)ϕ(x).

(iii) If E is in form T (∃x)ϕ(x), let Bn+1 be the (unique) extension of Bn

to a branch in τn+1, i.e. by the entry Tϕ(x/c). Since
An |= (∃x)ϕ(x), there is some a ∈ A with An |= ϕ(x)[e(x/a)] for
every assignment e. Let An+1 be the expansion of An by a new
constant cA = a. Then An+1 |= ϕ(x/c). Analogously for E in form
F (∀x)ϕ(x).

The base step for n = 0 follows from similar analysis of atomic tableaux
for the root entry R applying the assumption that A agrees with R.
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Theorem on soundness

We will show that the tableau method in predicate logic is sound.

Theorem For every theory T and sentence ϕ, if ϕ is tableau provable

from T, then ϕ is valid in T , i.e. T ` ϕ ⇒ T |= ϕ.

Proof

Let ϕ be tableau provable from a theory T , i.e. there is a
contradictory tableau τ from T with the root entry Fϕ.

Suppose for a contradiction that ϕ is not valid in T , i.e. there exists
a model A of the theory T in which ϕ is not true (a counterexample).

Since A agrees with the root entry Fϕ, by the previous lemma, A can
be expanded to the language LC so that it agrees with some branch
in τ .

But this is impossible, since every branch of τ is contradictory, i.e. it
contains a pair of entries Tψ, Fψ for some sentence ψ.
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The canonical model
From a noncontradictory branch B of a finished tableau we build a model
that agrees with B. We build it on available (syntactical) objects - ground
terms.

Let B be a noncontradictory branch of a finished tableau from a theory T
of a language L = 〈F ,R〉. The canonical model from B is the
LC -structure A = 〈A,FA,RA〉 where

1 A is the set of all ground terms of the language LC ,
2 f A(ti1 , . . . , tin) = f (ti1 , . . . , tin) for every n-ary function symbol

f ∈ F ∪ (LC \ L) a ti1 , . . . , tin ∈ A.
3 RA(ti1 , . . . , tin)⇔ TR(ti1 , . . . , tin) is an entry on B for every n-ary

relation symbol R ∈ R or equality and ti1 , . . . , tin ∈ A.

Remark The expression f (ti1 , . . . , tin) on the right side of (2) is a ground
term of LC , i.e. an element of A. Informally, to indicate that it is a
syntactical object

f A(ti1 , . . . , tin) = “f (ti1 , . . . , tin)”
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The canonical model - an example

Let T = {(∀x)R(f (x))} be a theory of a language L = 〈R, f , d〉. The
systematic tableau for F¬R(d) from T contains a single branch B, which
is noncontradictory.

The canonical model A = 〈A,RA, f A, dA, cAi 〉i∈N from B is for language
LC and

A = {d , f (d), f (f (d)), . . . , c0, f (c0), f (f (c0)), . . . , c1, f (c1), f (f (c1)), . . . },
dA = d , cAi = ci for i ∈ N,

f A(d) = “f (d)”, f A(f (d)) = “f (f (d))”, f A(f (f (d))) = “f (f (f (d)))”, . . .

RA = {d , f (d), f (f (d)), . . . , f (c0), f (f (c0)), . . . , f (c1), f (f (c1)), . . . }.

The reduct of A to the language L is A′ = 〈A,RA, f A, dA〉.
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The canonical model with equality
If L is with equality, T ∗ is the extension of T by axioms of equality for L.

If we require that the equality is interpreted as the identity, we have to
take the quotient of the canonical model A by the congruence =A.

By (3), for the relation =A in A from B it holds that for every ti1 , ti2 ∈ A,

ti1 =A ti2 ⇔ T (ti1 = ti2) is an entry on V .

Since B is finished and contains the axioms of equality, the relation =A is
a congruence for all functions and relations in A.

The canonical model with equality from B is the quotient A/=A.

Observation For every formula ϕ,

A |= ϕ ⇔ (A/=A) |= ϕ,

where = is interpreted in A by the relation =A, while in A/=A by the
identity.

Remark A is a countably infinite model, but A/=A can be finite.
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The canonical model with equality - an example
Let T = {(∀x)R(f (x)), (∀x)(x = f (f (x)))} be of L = 〈R, f , d〉 with
equality. The systematic tableau for F¬R(d) from T ∗ contains a
noncontradictory B.

In the canonical model A = 〈A,RA,=A, f A, dA, cAi 〉i∈N from B we have
that

s =A t ⇔ t = f (· · · (f (s) · · · ) or s = f (· · · (f (t) · · · ),
where f is applied 2i-times for some i ∈ N.

The canonical model with equality from B is

B = (A/=A) = 〈A/=A,RB , f B , dB , cBi 〉i∈N where

(A/=A) = {[d ]=A , [f (d)]=A , [c0]=A , [f (c0)]=A , [c1]=A , [f (c1)]=A , . . . },
dB = [d ]=A , cBi = [ci ]=A for i ∈ N,

f B([d ]=A) = [f (d)]=A , f B([f (d)]=A) = [f (f (d))]=A = [d ]=A , . . .

RB = (A/=A).

The reduct of B to the language L is B′ = 〈A/=A,RB , f B , dB〉.
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Completeness
Lemma Canonical model A from a noncontr. finished B agrees with B.

Proof By induction on the structure of a sentence in an entry on B.

For atomic ϕ, if Tϕ is on B, then A |= ϕ by (3). If Fϕ is on B, then

Tϕ is not on B since B is noncontradictory, so A |= ¬ϕ by (3).

If T (ϕ ∧ ψ) is on B, then Tϕ and Tψ are on B since B is finished.
By induction, A |= ϕ and A |= ψ, and thus A |= ϕ ∧ ψ.

If F (ϕ ∧ ψ) is on B, then Fϕ or Fψ is on B since B is finished. By
induction, A |= ¬ϕ or A |= ¬ψ, and thus A |= ¬(ϕ ∧ ψ).

For other connectives similarly as in previous two cases.

If T (∀x)ϕ(x) is on B, then Tϕ(x/t) is on B for every t ∈ A since B
is finished. By induction, A |= ϕ(x/t) for every t ∈ A, and thus
A |= (∀x)ϕ(x). Similarly for F (∃x)ϕ(x) on B.

If T (∃x)ϕ(x) is on B, then Tϕ(x/c) is on B for some c ∈ A since B
is finished. By induction, A |= ϕ(x/c), and thus A |= (∃x)ϕ(x).
Similarly for F (∀x)ϕ(x) on B.
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Theorem on completeness
We will show that the tableau method in predicate logic is complete.

Theorem For every theory T and sentence ϕ, if ϕ is valid in T , then ϕ is

tableau provable from T, i.e. T |= ϕ ⇒ T ` ϕ.

Proof Let ϕ be valid in T . We will show that an arbitrary finished tableau

(e.g. systematic) τ from a theory T with the root entry Fϕ is
contradictory.

If not, then there is some noncontradictory branch B in τ .

By the previous lemma, there is a structure A for LC that agrees with
B, in particular with the root entry Fϕ, i.e. A |= ¬ϕ.

Let A′ be the reduct of A to the language L. Then A′ |= ¬ϕ.

Since B is finished, it contains Tψ for every ψ ∈ T .

Thus A′ is a model of T (as A′ agrees with Tψ for every ψ ∈ T ).

But this contradicts the assumption that ϕ is valid in T .

Therefore the tableau τ is a proof of ϕ from T .
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Properties of theories

We introduce syntactic variants of previous semantical definitions.

Let T be a theory of a language L. If a sentence ϕ is provable from T , we
say that ϕ is a theorem of T . The set of theorems of T is denoted by

ThmL(T ) = {ϕ ∈ FmL | T ` ϕ}.
We say that a theory T is

inconsistent if T ` ⊥, otherwise T is consistent,

complete if it is consistent and every sentence is provable or refutable

from T , i.e. T ` ϕ or T ` ¬ϕ.

an extension of a theory T ′ of L′ if L′ ⊆ L and
ThmL′(T ′) ⊆ ThmL(T ), we say that an extension T of a theory T ′ is
simple if L = L′; and

conservative if ThmL′(T ′) = ThmL(T ) ∩ FmL′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa.
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Corollaries

From the soundness and completeness of the tableau method it follows
that these syntactic definitions agree with their semantic variants.

Corollary For every theory T and sentences ϕ, ψ of a language L,

T ` ϕ if and only if T |= ϕ,

ThmL(T ) = θL(T ),

T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,

T is complete if and only if T is semantically complete, i.e. it has

a single model, up to elementarily equivalence,

T , ϕ ` ψ if and only if T ` ϕ→ ψ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of

tableaux.

NAIL062 Propositional & Predicate Logic Lecture 6 November 23, 2020 40 / 41



Existence of a countable model and compactness
Theorem Every consistent theory T of a countable language L without

equality has a countably infinite model.

Proof Let τ be the systematic tableau from T with F⊥ in the root. Since
τ is finished and contains a noncontradictory branch B as ⊥ is not
provable from T , there exists a canonical model A from B. Since A
agrees with B, its reduct to the language L is a desired countably infinite
model of T .

Remark This is a weak version of so called Löwenheim-Skolem theorem.

In a countable language with equality the canonical model with equality is

countable (i.e. finite or countably infinite).

Theorem A theory T has a model iff every finite subset of T has a model.

Proof The implication from left to right is obvious. If T has no model,
then it is inconsistent, i.e. ⊥ is provable by a systematic tableau τ from
T . Since τ is finite, ⊥ is provable from some finite T ′ ⊆ T , i.e. T ′ has no
model.
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Finished tableau
A finished noncontradictory branch should provide us with a
counterexample.

An occurrence of an entry E in a node B of a tableau τ is i -th if B has
exactly i − 1 predecessors labeled by E ; and is reduced on a branch B
through B if

a) E is neither in form of T (∀x)ϕ(x) nor F (∃x)ϕ(x) and E occurs on B
as a root of an atomic tableau, i.e. it was already expanded on B, or

b) E is in form of T (∀x)ϕ(x) or F (∃x)ϕ(x), E has an (i + 1)-th
occurrence on B, and B contains an entry Tϕ(x/ti ) resp. Fϕ(x/ti )
where ti is the i-th ground term (of the language LC ).

Let B be a branch in a tableau τ from a theory T . We say that

B is finished if it is contradictory, or every occurrence of an entry on
B is reduced on B and, moreover, B contains Tϕ for every ϕ ∈ T ,

τ is finished if every branch in τ is finished.
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Systematic tableau - construction
Let R be an entry and T = {ϕ0, ϕ1, . . . } be a (possibly infinite) theory.

(1) We take the atomic tableau for R as τ0. In case (∗) we choose any
c ∈ LC \ L, in case (]) we take t1 for t. Proceed as follows:

(2) Let B be the leftmost node in the smallest possible level in τn
containing an occurrence of an entry E that is not reduced on some
noncontradictory branch through B. (If B doesn’t exist, set τ ′n = τn.)

(3a) If E is neither T (∀x)ϕ(x) nor F (∃x)ϕ(x), let τ ′n be the tableau
obtained from τn by adjoining the atomic tableau for E to every
noncontr. branch through B. In case (∗), choose ci with smallest i .

(3b) If E is T (∀x)ϕ(x) or F (∃x)ϕ(x) and it has i-th occurrence in B, let
τ ′n be the tableau obtained from τn by adjoining atomic tableau for E
to every noncontr. branch through B, where we take the term ti for t.

(4) Let τn+1 be the tableau obtained from τ ′n by adjoining Tϕn to every
noncontradictory branch that does not contain Tϕn yet. (If ϕn does
not exist, we take τn+1 = τ ′n.)

The systematic tableau for R from T is the result of this process: τ = ∪τn
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Systematic tableau - an example

T ((∃y)(¬R(y, y) ∨ P (y, y)) ∧ (∀x)R(x, x))

T (∃y)(¬R(y, y) ∨ P (y, y))

T (∀x)R(x, x)

T (¬R(c0, c0) ∨ P (c0, c0)) c0 new

T (∀x)R(x, x)

TR(c0, c0) (assuming that t1 = c0)

T (¬R(c0, c0)) TP (c0, c0)

⊗

T (∀x)R(x, x)

TR(t2, t2)

T (∀x)R(x, x)

TR(t3, t3)

FR(c0, c0)

T (∀x)R(x, x)

TR(t2, t2)
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Systematic tableau - being finished
Proposition Every systematic tableau is finished.

Proof Let τ = ∪τn be a systematic tableau from T = {ϕ0, ϕ1, . . . } with
root R and let E be an entry in a node V of the tableau τ .

There are only finitely many entries in τ in levels up to the level of V .

If the occurrence of E in V was unreduced on some noncontradictory
branch in τ , it would be found in some step (2) and reduced by (3a),
(3b).

By step (4) every ϕn ∈ T will be (no later than) in τn+1 on every
noncontradictory branch.

Hence the systematic tableau τ has all branches finished.

Proposition If a systematic tableau τ is a proof (from a theory T), it is
finite.

Proof Suppose that τ is infinite. Then by König’s lemma, τ contains an
infinite branch. This branch is noncontradictory since in the construction
only noncontradictory branches are prolonged. But this contradicts the
assumption that τ is a contradictory tableau.
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Equality

Axioms of equality for a language L with equality are

(i) x = x

(ii) x1 = y1 ∧ · · · ∧ xn = yn → f (x1, . . . , xn) = f (y1, . . . , yn)

for each n-ary function symbol f of the language L.

(iii) x1 = y1 ∧ · · · ∧ xn = yn → (R(x1, . . . , xn)→ R(y1, . . . , yn))

for each n-ary relation symbol R of the language L including =.

A tableau proof from a theory T in a language L with equality is a tableau

proof from T ∗ where T ∗ denotes the extension of T by adding axioms of

equality for L (resp. their universal closures).

Remark In context of logic programming the equality often has other
meaning than in mathematics (identity). For example in Prolog, t1 = t2
means that t1 and t2 are unifiable.
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Congruence and quotient structure
An equivalence ∼ on A, f : An → A, and R ⊆ An, where n ∈ N, is:

a congruence for the function f if for every x1, . . . , xn, y1, . . . , yn ∈ A

x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ⇒ f (x1, . . . , xn) ∼ f (y1, . . . , yn),

a congruence for the relation R if for every x1, . . . , xn, y1, . . . , yn ∈ A

x1 ∼ y1 ∧ · · · ∧ xn ∼ yn ⇒ (R(x1, . . . , xn)⇔ R(y1, . . . , yn)).

Let an equivalence ∼ on A be a congruence for every function and relation
in a structure A = 〈A,FA,RA〉 of language L = 〈F ,R〉. The quotient
(structure) of A by ∼ is the structure A/∼ = 〈A/∼,FA/∼,RA/∼〉 where

f A/∼([x1]∼, . . . , [xn]∼) = [f A(x1, . . . , xn)]∼

RA/∼([x1]∼, . . . , [xn]∼)⇔ RA(x1, . . . , xn)

for each f ∈ F , R ∈ R, and x1, . . . , xn ∈ A, i.e. the functions and
relations are defined from A using representatives.

Example: Zp is the quotient of Z = 〈Z,+,−, 0〉 by the congruence
modulo E .
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Role of axioms of equality

Let A be a structure of a language L in which the equality is interpreted as
a relation =A satisfying the axioms of equality for L, i.e. not necessarily
the identity relation.

1) From axioms (i) and (iii) it follows that the relation =A is an
equivalence.

2) Axioms (ii) and (iii) express that the relation =A is a congruence for
every function and relation in A.

3) If A |= T ∗ then also (A/=A) |= T ∗ where A/=A is the quotient of A
by =A. Moreover, the equality is interpreted in A/=A as the identity
relation.

On the other hand, in every model in which the equality is interpreted as
the identity relation, all axioms of equality evidently hold.
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Soundness
We say that a model A agrees with an entry E , if E is Tϕ and A |= ϕ or
if E is Fϕ and A |= ¬ϕ, i.e. A 6|= ϕ. Moreover, A agrees with a branch B
if A agrees with every entry on B.

Lemma Let A be a model of a theory T of a language L that agrees with
the root entry R in a tableau τ = ∪τn from T. Then A can be expanded
to the language LC so that it agrees with some branch B in τ .

Remark It suffices to expand A only by constants cA such that c ∈ LC \ L
occurs on B, other constants may be defined arbitrarily.

Proof By induction on n we find a branch Bn in τn and an expansion An

of A by constants cA for all c ∈ LC \ L on Bn s.t. An agrees with Bn and
Bn−1 ⊆ Bn. Assume we have a branch Bn in τn and an expansion An that
agrees with Bn.

If τn+1 is formed from τn without extending the branch Bn, we take
Bn+1 = Bn and An+1 = An.
If τn+1 is formed from τn by appending Tϕ to Bn for some ϕ ∈ T , let
Bn+1 be this branch and An+1 = An. Since A |= ϕ, An+1 agrees
with Bn+1.
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Soundness - proof (cont.)
Otherwise τn+1 is formed from τn by appending an atomic tableau to
Bn for some entry E on Bn. By induction we know that An agrees
with E .

(i) If E is formed by a logical connective, we take An+1 = An and verify
that Bn can always be extended to a branch Bn+1 agreeing with An+1.

(ii) If E is in form T (∀x)ϕ(x), let Bn+1 be the (unique) extension of Bn

to a branch in τn+1, i.e. by the entry Tϕ(x/t). Let An+1 be any
expansion of by new constants from t. Since An |= (∀x)ϕ(x), we
have An+1 |= ϕ(x/t). Analogously for E in form F (∃x)ϕ(x).

(iii) If E is in form T (∃x)ϕ(x), let Bn+1 be the (unique) extension of Bn

to a branch in τn+1, i.e. by the entry Tϕ(x/c). Since
An |= (∃x)ϕ(x), there is some a ∈ A with An |= ϕ(x)[e(x/a)] for
every assignment e. Let An+1 be the expansion of An by a new
constant cA = a. Then An+1 |= ϕ(x/c). Analogously for E in form
F (∀x)ϕ(x).

The base step for n = 0 follows from similar analysis of atomic tableaux
for the root entry R applying the assumption that A agrees with R.
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Theorem on soundness

We will show that the tableau method in predicate logic is sound.

Theorem For every theory T and sentence ϕ, if ϕ is tableau provable

from T, then ϕ is valid in T , i.e. T ` ϕ ⇒ T |= ϕ.

Proof

Let ϕ be tableau provable from a theory T , i.e. there is a
contradictory tableau τ from T with the root entry Fϕ.

Suppose for a contradiction that ϕ is not valid in T , i.e. there exists
a model A of the theory T in which ϕ is not true (a counterexample).

Since A agrees with the root entry Fϕ, by the previous lemma, A can
be expanded to the language LC so that it agrees with some branch
in τ .

But this is impossible, since every branch of τ is contradictory, i.e. it
contains a pair of entries Tψ, Fψ for some sentence ψ.
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The canonical model
From a noncontradictory branch B of a finished tableau we build a model
that agrees with B. We build it on available (syntactical) objects - ground
terms.

Let B be a noncontradictory branch of a finished tableau from a theory T
of a language L = 〈F ,R〉. The canonical model from B is the
LC -structure A = 〈A,FA,RA〉 where

1 A is the set of all ground terms of the language LC ,
2 f A(ti1 , . . . , tin) = f (ti1 , . . . , tin) for every n-ary function symbol

f ∈ F ∪ (LC \ L) a ti1 , . . . , tin ∈ A.
3 RA(ti1 , . . . , tin)⇔ TR(ti1 , . . . , tin) is an entry on B for every n-ary

relation symbol R ∈ R or equality and ti1 , . . . , tin ∈ A.

Remark The expression f (ti1 , . . . , tin) on the right side of (2) is a ground
term of LC , i.e. an element of A. Informally, to indicate that it is a
syntactical object

f A(ti1 , . . . , tin) = “f (ti1 , . . . , tin)”
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The canonical model - an example

Let T = {(∀x)R(f (x))} be a theory of a language L = 〈R, f , d〉. The
systematic tableau for F¬R(d) from T contains a single branch B, which
is noncontradictory.

The canonical model A = 〈A,RA, f A, dA, cAi 〉i∈N from B is for language
LC and

A = {d , f (d), f (f (d)), . . . , c0, f (c0), f (f (c0)), . . . , c1, f (c1), f (f (c1)), . . . },
dA = d , cAi = ci for i ∈ N,

f A(d) = “f (d)”, f A(f (d)) = “f (f (d))”, f A(f (f (d))) = “f (f (f (d)))”, . . .

RA = {d , f (d), f (f (d)), . . . , f (c0), f (f (c0)), . . . , f (c1), f (f (c1)), . . . }.

The reduct of A to the language L is A′ = 〈A,RA, f A, dA〉.
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The canonical model with equality
If L is with equality, T ∗ is the extension of T by axioms of equality for L.

If we require that the equality is interpreted as the identity, we have to
take the quotient of the canonical model A by the congruence =A.

By (3), for the relation =A in A from B it holds that for every ti1 , ti2 ∈ A,

ti1 =A ti2 ⇔ T (ti1 = ti2) is an entry on V .

Since B is finished and contains the axioms of equality, the relation =A is
a congruence for all functions and relations in A.

The canonical model with equality from B is the quotient A/=A.

Observation For every formula ϕ,

A |= ϕ ⇔ (A/=A) |= ϕ,

where = is interpreted in A by the relation =A, while in A/=A by the
identity.

Remark A is a countably infinite model, but A/=A can be finite.
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The canonical model with equality - an example
Let T = {(∀x)R(f (x)), (∀x)(x = f (f (x)))} be of L = 〈R, f , d〉 with
equality. The systematic tableau for F¬R(d) from T ∗ contains a
noncontradictory B.

In the canonical model A = 〈A,RA,=A, f A, dA, cAi 〉i∈N from B we have
that

s =A t ⇔ t = f (· · · (f (s) · · · ) or s = f (· · · (f (t) · · · ),
where f is applied 2i-times for some i ∈ N.

The canonical model with equality from B is

B = (A/=A) = 〈A/=A,RB , f B , dB , cBi 〉i∈N where

(A/=A) = {[d ]=A , [f (d)]=A , [c0]=A , [f (c0)]=A , [c1]=A , [f (c1)]=A , . . . },
dB = [d ]=A , cBi = [ci ]=A for i ∈ N,

f B([d ]=A) = [f (d)]=A , f B([f (d)]=A) = [f (f (d))]=A = [d ]=A , . . .

RB = (RA/=A).

The reduct of B to the language L is B′ = 〈A/=A,RB , f B , dB〉.
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Completeness
Lemma Canonical model A from a noncontr. finished B agrees with B.

Proof By induction on the structure of a sentence in an entry on B.

For atomic ϕ, if Tϕ is on B, then A |= ϕ by (3). If Fϕ is on B, then

Tϕ is not on B since B is noncontradictory, so A |= ¬ϕ by (3).

If T (ϕ ∧ ψ) is on B, then Tϕ and Tψ are on B since B is finished.
By induction, A |= ϕ and A |= ψ, and thus A |= ϕ ∧ ψ.

If F (ϕ ∧ ψ) is on B, then Fϕ or Fψ is on B since B is finished. By
induction, A |= ¬ϕ or A |= ¬ψ, and thus A |= ¬(ϕ ∧ ψ).

For other connectives similarly as in previous two cases.

If T (∀x)ϕ(x) is on B, then Tϕ(x/t) is on B for every t ∈ A since B
is finished. By induction, A |= ϕ(x/t) for every t ∈ A, and thus
A |= (∀x)ϕ(x). Similarly for F (∃x)ϕ(x) on B.

If T (∃x)ϕ(x) is on B, then Tϕ(x/c) is on B for some c ∈ A since B
is finished. By induction, A |= ϕ(x/c), and thus A |= (∃x)ϕ(x).
Similarly for F (∀x)ϕ(x) on B.
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Theorem on completeness
We will show that the tableau method in predicate logic is complete.

Theorem For every theory T and sentence ϕ, if ϕ is valid in T , then ϕ is

tableau provable from T, i.e. T |= ϕ ⇒ T ` ϕ.

Proof Let ϕ be valid in T . We will show that an arbitrary finished tableau

(e.g. systematic) τ from a theory T with the root entry Fϕ is
contradictory.

If not, then there is some noncontradictory branch B in τ .

By the previous lemma, there is a structure A for LC that agrees with
B, in particular with the root entry Fϕ, i.e. A |= ¬ϕ.

Let A′ be the reduct of A to the language L. Then A′ |= ¬ϕ.

Since B is finished, it contains Tψ for every ψ ∈ T .

Thus A′ is a model of T (as A′ agrees with Tψ for every ψ ∈ T ).

But this contradicts the assumption that ϕ is valid in T .

Therefore the tableau τ is a proof of ϕ from T .
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Properties of theories

We introduce syntactic variants of previous semantical definitions.

Let T be a theory of a language L. If a sentence ϕ is provable from T , we
say that ϕ is a theorem of T . The set of theorems of T is denoted by

ThmL(T ) = {ϕ ∈ FmL | T ` ϕ}.
We say that a theory T is

inconsistent if T ` ⊥, otherwise T is consistent,

complete if it is consistent and every sentence is provable or refutable

from T , i.e. T ` ϕ or T ` ¬ϕ.

an extension of a theory T ′ of L′ if L′ ⊆ L and
ThmL′(T ′) ⊆ ThmL(T ), we say that an extension T of a theory T ′ is
simple if L = L′; and

conservative if ThmL′(T ′) = ThmL(T ) ∩ FmL′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa.
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Corollaries

From the soundness and completeness of the tableau method it follows
that these syntactic definitions agree with their semantic variants.

Corollary For every theory T and sentences ϕ, ψ of a language L,

T ` ϕ if and only if T |= ϕ,

ThmL(T ) = θL(T ),

T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,

T is complete if and only if T is semantically complete, i.e. it has

a single model, up to elementarily equivalence,

T , ϕ ` ψ if and only if T ` ϕ→ ψ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of

tableaux.
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December 7, 2020

NAIL062 Propositional & Predicate Logic Lecture 10 December 7, 2020 1 / 21



Existence of a countable model and compactness
Theorem Every consistent theory T of a countable language L without

equality has a countably infinite model.

Proof Let τ be the systematic tableau from T with F⊥ in the root. Since
τ is finished and contains a noncontradictory branch B as ⊥ is not
provable from T , there exists a canonical model A from B. Since A
agrees with B, its reduct to the language L is a desired countably infinite
model of T .

Remark This is a weak version of so called Löwenheim-Skolem theorem.

In a countable language with equality the canonical model with equality is

countable (i.e. finite or countably infinite).

Theorem A theory T has a model iff every finite subset of T has a model.

Proof The implication from left to right is obvious. If T has no model,
then it is inconsistent, i.e. ⊥ is provable by a systematic tableau τ from
T . Since τ is finite, ⊥ is provable from some finite T ′ ⊆ T , i.e. T ′ has no
model.
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Non-standard model of natural numbers

Let N = 〈N,S ,+, ·, 0,≤〉 be the standard model of natural numbers.

Let Th(N) denote the set of all sentences that are valid in N. For n ∈ N
let n denote the term S(S(· · · (S(0)) · · · )), so called the n-th numeral,
where S is applied n-times.

Consider the following theory T where c is a new constant symbol.

T = Th(N) ∪ {n < c | n ∈ N}

Observation Every finite subset of T has a model.

Thus by the compactness theorem, T has a model A. It is a non-standard

model of natural numbers. Every sentence from Th(N) is valid in A but it

contains an element cA that is greater then every n ∈ N (i.e. the value of

the term n in A).
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Extensions of theories
We show that introducing new definitions has only an “auxiliary
character”.

Proposition Let T be an L-theory and T ′ an L′-theory, where L ⊆ L′.

(i) T ′ is an extension of T if and only if the reduct A of every model A′
of T ′ to the language L is a model of T ,

(ii) T ′ is a conservative extension of T if T ′ is an extension of T and
every model A of T can be expanded to the language L′ on a model
A′ of T ′.

Proof

(i)a) If T ′ is an extension of T and ϕ is any axiom of T , then T ′ |= ϕ.
Thus A′ |= ϕ and also A |= ϕ, which implies that A is a model of T .

(i)b) If A is a model of T and T |= ϕ where ϕ is of L, then A |= ϕ and also
A′ |= ϕ. This implies that T ′ |= ϕ and thus T ′ is an extension of T .

(ii) If T ′ |= ϕ where ϕ is of L and A is a model of T , then in its
expansion A′ that models T ′ we have A′ |= ϕ. Thus also A |= ϕ, and
hence T |= ϕ. Therefore T ′ is conservative.

NAIL062 Propositional & Predicate Logic Lecture 10 December 7, 2020 5 / 21



Extensions by definition of a relation symbol
Let T be a theory of L, ψ(x1, . . . , xn) be a formula of L in free variables
x1, . . . , xn and L′ denote the language L with a new n-ary relation symbol
R.

The extension of T by definition of R with the formula ψ is the theory T ′

of L′ obtained from T by adding the axiom
R(x1, . . . , xn) ↔ ψ(x1, . . . , xn)

Observation Every model of T can be uniquely expanded to a model of
T ′.

Corollary T ′ is a conservative extension of T .

Proposition For every formula ϕ′ of L′ there is ϕ of L s.t. T ′ |= ϕ′ ↔ ϕ.

Proof Replace each subformula R(t1, . . . , tn) in ϕ with
ψ′(x1/t1, . . . , xn/tn), where ψ′ is a suitable variant of ψ allowing all
substitutions.

For example, the symbol ≤ can be defined in arithmetics by the axiom
x ≤ y ↔ (∃z)(x + z = y)
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Extensions by definition of a function symbol
Let T be a theory of a language L and ψ(x1, . . . , xn, y) be a formula of L
in free variables x1, . . . , xn, y such that

T |= (∃y)ψ(x1, . . . , xn, y) (existence)

T |= ψ(x1, . . . , xn, y) ∧ ψ(x1, . . . , xn, z) → y = z (uniqueness)

Let L′ denote the language L with a new n-ary function symbol f .

The extension of T by definition of f with the formula ψ is the theory T ′

of L′ obtained from T by adding the axiom

f (x1, . . . , xn) = y ↔ ψ(x1, . . . , xn, y)

Remark In particular, if ψ is t(x1, . . . , xn) = y where t is a term and
x1, . . . , xn are the variables in t, both the conditions of existence and
uniqueness hold.

For example binary − can be defined using + and unary − by the axiom
x − y = z ↔ x + (−y) = z
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Extensions by definition of a function symbol (cont.)
Observation Every model of T can be uniquely expanded to a model of
T ′.

Corollary T ′ is a conservative extension of T .

Proposition For every formula ϕ′ of L′ there is ϕ of L s.t. T ′ |= ϕ′ ↔ ϕ.

Proof It suffices to consider ϕ′ with a single occurrence of f . If ϕ′ has
more, we may proceed inductively. Let ϕ∗ denote the formula obtained
from ϕ′ by replacing the term f (t1, . . . , tn) with a new variable z . Let ϕ
be the formula

(∃z)(ϕ∗ ∧ ψ′(x1/t1, . . . , xn/tn, y/z)),

where ψ′ is a suitable variant of ψ allowing all substitutions.

Let A be a model of T ′, e be an assignment, and a = f A(t1, . . . , tn)[e].
By the two conditions, A |= ψ′(x1/t1, . . . , xn/tn, y/z)[e] if and only if
e(z) = a. Thus

A |= ϕ[e] ⇔ A |= ϕ∗[e(z/a)] ⇔ A |= ϕ′[e]

for every assignment e, i.e. A |= ϕ′ ↔ ϕ and so T ′ |= ϕ′ ↔ ϕ.
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Extensions by definitions
A theory T ′ of L′ is called an extension of a theory T of L by definitions if
it is obtained from T by successive definitions of relation and function
symbols.

Corollary Let T ′ be an extension of a theory T by definitions. Then

every model of T can be uniquely expanded to a model of T ′,

T ′ is a conservative extension of T ,

for every formula ϕ′ of L′ there is a formula ϕ of L such that
T ′ |= ϕ′ ↔ ϕ.

For example, in T = {(∃y)(x + y = 0), (x + y = 0) ∧ (x + z = 0)→ y = z} of

L = 〈+, 0,≤〉 with equality we can define < and unary − by the axioms

−x = y ↔ x + y = 0

x < y ↔ x ≤ y ∧ ¬(x = y)

Then the formula −x < y is equivalent in this extension to a formula

(∃z)((z ≤ y ∧ ¬(z = y)) ∧ x + z = 0).
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Equisatisfiability
We will see that the problem of satisfiability can be reduced to open
theories.

Theories T , T ′ are equisatisfiable if T has a model ⇔ T ′ has a
model.

A formula ϕ is in the prenex (normal) form (PNF) if it is written as

(Q1x1) . . . (Qnxn)ϕ′,

where Qi denotes ∀ or ∃, variables x1, . . . , xn are all distinct and ϕ′ is
an open formula, called the matrix. (Q1x1) . . . (Qnxn) is called the
prefix.

In particular, if all quantifiers are ∀, then ϕ is a universal formula.

To find an open theory equisatisfiable with T we proceed as follows.

(1) We replace axioms of T by equivalent formulas in the prenex form.

(2) We transform them, using new function symbols, to equisatisfiable

universal formulas, so called Skolem variants.

(3) We take their matrices as axioms of a new theory.
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Conversion rules for quantifiers
Let Q denote ∀ or ∃ and let Q denote the complementary quantifier.

For every formulas ϕ, ψ such that x is not free in the formula ψ,

|= ¬(Qx)ϕ ↔ (Qx)¬ϕ
|= ((Qx)ϕ ∧ ψ) ↔ (Qx)(ϕ ∧ ψ)

|= ((Qx)ϕ ∨ ψ) ↔ (Qx)(ϕ ∨ ψ)

|= ((Qx)ϕ→ ψ) ↔ (Qx)(ϕ→ ψ)

|= (ψ → (Qx)ϕ) ↔ (Qx)(ψ → ϕ)

The above equivalences can be verified semantically or proved by the
tableau method (by taking the universal closure if it is not a sentence).

Remark The assumption that x is not free in ψ is necessary in each rule

above (except the first one) for some quantifier Q. For example,

6|= ((∃x)P(x) ∧ P(x)) ↔ (∃x)(P(x) ∧ P(x))
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Conversion to the prenex normal form
Proposition Let ϕ′ be the formula obtained from ϕ by replacing some

occurrences of a subformula ψ with ψ′. If T |= ψ ↔ ψ′, then
T |= ϕ↔ ϕ′.

Proof Easily by induction on the structure of the formula ϕ.

Proposition For every formula ϕ there is an equivalent formula ϕ′ in the

prenex normal form, i.e. |= ϕ↔ ϕ′.

Proof By induction on the structure of ϕ applying the conversion rules for

quantifiers, replacing subformulas with their variants if needed, and
applying the above proposition on equivalent transformations.

For example, ((∀z)P(x , z) ∧ P(y , z)) → ¬(∃x)P(x , y)

((∀u)P(x , u) ∧ P(y , z)) → (∀x)¬P(x , y)

(∀u)(P(x , u) ∧ P(y , z)) → (∀v)¬P(v , y)

(∃u)((P(x , u) ∧ P(y , z)) → (∀v)¬P(v , y))

(∃u)(∀v)((P(x , u) ∧ P(y , z)) → ¬P(v , y))
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Skolem variants

Let ϕ be a sentence of a language L in the prenex normal form, let
y1, . . . , yn be the existentially quantified variables in ϕ (in this order), and
for every i ≤ n let x1, . . . , xni be the variables that are universally
quantified in ϕ before yi . Let L′ be an extension of L with new ni -ary
function symbols fi for all i ≤ n.

Let ϕS denote the formula of L′ obtained from ϕ by removing all (∃yi )’s
from the prefix and by replacing each occurrence of yi with the term
fi (x1, . . . , xni ). Then ϕS is called a Skolem variant of ϕ.

For example, for the sentence ϕ

(∃y1)(∀x1)(∀x2)(∃y2)(∀x3)R(y1, x1, x2, y2, x3)

the following formula ϕS is a Skolem variant of ϕ

(∀x1)(∀x2)(∀x3)R(f1, x1, x2, f2(x1, x2), x3),

where f1 is a new constant symbol and f2 is a new binary function symbol.
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Properties of Skolem variants
Lemma Let ϕ be a sentence (∀x1) . . . (∀xn)(∃y)ψ of L and ϕ′ be a
sentence (∀x1) . . . (∀xn)ψ(y/f (x1, . . . , xn)) where f is a new function
symbol. Then

(1) the reduct A of every model A′ of ϕ′ to L is a model of ϕ,

(2) every model A of ϕ can be expanded into a model A′ of ϕ′.

Remark Compared to extensions by definition of a function symbol, the

expansion in (2) does not need to be unique now.

Proof (1) Let A′ |= ϕ′ and A be the reduct of A′ to L. Since
A |= ψ[e(y/a)] for every assignment e where a = (f (x1, . . . , xn))A

′
[e], we

have also A |= ϕ.

(2) Let A |= ϕ. There exists a function f A : An → A such that for every

assignment e it holds A |= ψ[e(y/a)] where a = f A(e(x1), . . . , e(xn)), and
thus the expansion A′ of A by the function f A is a model of ϕ′.

Corollary If ϕ′ is a Skolem variant of ϕ, then both statements (1) and
(2) hold for ϕ, ϕ′ as well. Hence ϕ, ϕ′ are equisatisfiable.
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Skolem’s theorem

Theorem Every theory T has an open conservative extension T ∗.

Proof We may assume that T is in a closed form. Let L be its language.

By replacing each axiom of T with an equivalent formula in the
prenex normal form we obtain an equivalent theory T ◦.

By replacing each axiom of T ◦ with its Skolem variant we obtain a
theory T ′ in an extended language L′ ⊇ L.

Since the reduct of every model of T ′ to the language L is a model of
T , the theory T ′ is an extension of T .

Furthermore, since every model of T can be expanded to a model of
T ′, it is a conservative extension.

Since every axiom of T ′ is a universal sentence, by replacing them
with their matrices we obtain an open theory T ∗ equivalent to T ′.

Corollary For every theory there is an equisatisfiable open theory.
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Reduction of unsatisfiability to propositional logic
If an open theory is unsatisfiable, we can demonstrate it “via ground
terms”.

For example, in the language L = 〈P,R, f , c〉 the theory

T = {P(x , y) ∨ R(x , y), ¬P(c , y), ¬R(x , f (x))}

is unsatisfiable, and this can be demonstrated by an unsatisfiable
conjunction of finitely many instances of (some) axioms of T in ground
terms

(P(c , f (c)) ∨ R(c, f (c))) ∧ ¬P(c , f (c)) ∧ ¬R(c , f (c)),

which may be seen as an unsatisfiable propositional formula

(p ∨ r) ∧ ¬p ∧ ¬r .

An instance ϕ(x1/t1, . . . , xn/tn) of an open formula ϕ in free variables

x1, . . . , xn is a ground instance if all terms t1, . . . , tn are ground terms (i.e.
terms without variables).
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Herbrand model
Let L = 〈R,F〉 be a language with at least one constant symbol. (If
needed, we add a new constant symbol to L.)

The Herbrand universe for L is the set of all ground terms of L.

For example, for L = 〈P, f , c〉 with f a binary function symbol, c a
constant symbol:

A = {c , f (c , c), f (f (c , c), c), f (c , f (c , c)), f (f (c , c), f (c , c)), . . . }

An L-structure A is a Herbrand structure if its domain A is the
Herbrand universe for L and for each n-ary function symbol f ∈ F ,
t1, . . . , tn ∈ A,

f A(t1, . . . , tn) = f (t1, . . . , tn)

(including n = 0, i.e. cA = c for every constant symbol c).

Remark Compared to a canonical model, the relations are not
specified.

E.g. A = 〈A,PA, f A, cA〉 with PA = ∅, cA = c, f A(c , c) = f (c , c), . . .

A Herbrand model of a theory T is a Herbrand structure that models T .
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Herbrand’s theorem
Theorem Let T be an open theory of a language L without equality and
with at least one constant symbol. Then
(a) either T has a Herbrand model, or
(b) there are finitely many ground instances of axioms of T whose

conjunction is unsatisfiable, and thus T has no model.

Proof Let T ′ be the set of all ground instances of axioms of T . Consider
a finished (e.g. systematic) tableau τ from T ′ in the language L (without
adding new constant symbols) with the root entry F⊥.

If the tableau τ contains a noncontradictory branch B, the canonical

model from B is a Herbrand model of T .

Else, τ is contradictory, i.e. T ′ ` ⊥. Moreover, τ is finite, so ⊥ is
provable from finitely many formulas of T ′, i.e. their conjunction is
unsatisfiable.

Remark If the language L is with equality, we extend T to T ∗ by axioms
of equality for L and if T ∗ has a Herbrand model A, we take its quotient
by =A.
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Corollaries of Herbrand’s theorem

Let L be a language containing at least one constant symbol.

Corollary For every open ϕ(x1, . . . , xn) of L, the formula (∃x1) . . . (∃xn)ϕ
is valid if and only if there exist mn ground terms tij of L for some m such
that

ϕ(x1/t11, . . . , xn/t1n) ∨ · · · ∨ ϕ(x1/tm1, . . . , xn/tmn)

is a (propositional) tautology.

Proof (∃x1) . . . (∃xn)ϕ is valid ⇔ (∀x1) . . . (∀xn)¬ϕ is unsatisfiable ⇔ ¬ϕ
is unsatisfiable. The rest follows from Herbrand’s theorem for {¬ϕ}.

Corollary An open theory T of L is satisfiable if and only if the theory T ′

of all ground instances of axioms of T is satisfiable.

Proof If T has a model A, every instance of each axiom of T is valid in
A, thus A is a model of T ′. If T is unsatisfiable, by H. theorem there are
(finitely many) formulas of T ′ whose conjunction is unsatisfiable, thus T ′

is unsatisfiable.
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Resolution method in predicate logic - introduction

A refutation procedure - its aim is to show that a given formula (or
theory) is unsatisfiable.

It assumes open formulas in CNF (and in clausal form).

A literal is (now) an atomic formula or its negation.

A clause is a finite set of literals, � denotes the empty clause.

A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

The resolution rule is more general - it allows to resolve through
literals that are unifiable.

Resolution in predicate logic is based on resolution in propositional
logic and unification.
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Local scope of variables

Variables can be renamed locally within clauses.

Let ϕ be an (input) open formula in CNF.

ϕ is satisfiable if and only if its universal closure ϕ′ is satisfiable.

For every two formulas ψ, χ and a variable x

|= (∀x)(ψ ∧ χ) ↔ (∀x)ψ ∧ (∀x)χ

(also in the case that x is free both in ψ and χ).

Every clause in ϕ can thus be replaced by its universal closure.

We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain

an equisatisfiable formula (2).

1 {{P(x),Q(x , y)}, {¬P(x),¬Q(y , x)}}
2 {{P(x),Q(x , y)}, {¬P(v),¬Q(u, v)}}
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Reduction to propositional level (grounding)
Herbrand’s theorem gives us the following (inefficient) method.

Let S be the (input) formula in clausal form.

We can assume that the language contains at least one constant
symbol.

Let S ′ be the set of all ground instances of all clauses from S .

By introducing propositional letters representing atomic sentences we

may view S ′ as a (possibly infinite) propositional formula in clausal
form.

We may verify that it is unsatisfiable by resolution on propositional
level.

E.g. for S = {{P(x , y),R(x , y)}, {¬P(c , y)}, {¬R(x , f (x))}} the set

S ′ = {{P(c , c),R(c , c)}, {P(c , f (c)),R(c , f (c))}, {P(f (c), f (c)),R(f (c), f (c))} . . . ,
{¬P(c , c)}, {¬P(c , f (c))}, . . . , {¬R(c , f (c))}, {¬R(f (c), f (f (c)))}, . . . }

is unsatisfiable since on propositional level

S ′ ⊇ {{P(c , f (c)),R(c , f (c))}, {¬P(c , f (c))}, {¬R(c , f (c))}} `R �.
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Substitutions - examples
It is more efficient to use suitable substitutions. For example, in

a) {P(x),Q(x , a)}, {¬P(y),¬Q(b, y)} substituting x/b, y/a gives
{P(b),Q(b, a)}, {¬P(a),¬Q(b, a)}, which resolves to
{P(b),¬P(a)}.
Or, substituting x/y and resolving through P(y) gives
{Q(y , a),¬Q(b, y)}.

b) {P(x),Q(x , a),Q(b, y)}, {¬P(v),¬Q(u, v)} substituting x/b, y/a,
u/b, v/a gives {P(b),Q(b, a)}, {¬P(a),¬Q(b, a)}, resolving to
{P(b),¬P(a)}.

c) {P(x),Q(x , z)}, {¬P(y),¬Q(f (y), y)} substituting x/f (z), y/z
gives {P(f (z)),Q(f (z), z)}, {¬P(z),¬Q(f (z), z)}, resolving to
{P(f (z)),¬P(z)}.
Alternatively, substituting x/f (a), y/a, z/a gives
{P(f (a)),Q(f (a), a)}, {¬P(a),¬Q(f (a), a)}, which resolves to
{P(f (a)),¬P(a)}. But the previous substitution is more general.
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Substitutions

A substitution is a (finite) set σ = {x1/t1, . . . , xn/tn}, where xi ’s are
distinct variables, ti ’s are terms, and the term ti is not xi .

If all ti ’s are ground terms, then σ is a ground substitution.

If all ti ’s are distinct variables, then σ is a renaming of variables.

An expression is a literal or a term.

An instance of an expression E by substitution σ = {x1/t1, . . . , xn/tn}
is the expression Eσ obtained from E by simultaneous replacing all
occurrences of all xi ’s for ti ’s, respectively.

For a set S of expressions, let Sσ = {Eσ | E ∈ S}.
Remark Since we substitute for all variables simultaneously, a possible

occurrence of xi in tj does not lead to a chain of substitutions.

For example, for S = {P(x),R(y , z)} and σ = {x/f (y , z), y/x , z/c} we
have

Sσ = {P(f (y , z)),R(x , c)}.
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Composing substitutions

For substitutions σ = {x1/t1, . . . , xn/tn} and τ = {y1/s1, . . . , yn/sn} we
define the composition of σ and τ to be

στ = {xi/tiτ | xi ∈ X , tiτ is not xi} ∪ {yj/sj | yj ∈ Y \ X}
where X = {x1, . . . , xn}, Y = {y1, . . . , ym}.
For example, for σ = {x/f (y),w/v}, τ = {x/a, y/g(x), v/w , u/c} we
have στ = {x/f (g(x)), y/g(x), v/w , u/c}.

Proposition (without proof) For every expression E and subst. σ, τ , %,

1 (Eσ)τ = E (στ),

2 (στ)% = σ(τ%).

Remark Composition of substitutions is not commutative, for the above:

τσ = {x/a, y/g(f (y)), u/c ,w/v} 6= στ.
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Unification

Let S = {E1, . . . ,En} be a (finite) set of expressions.

A unification of S is a substitution σ such that
E1σ = E2σ = · · · = Enσ, i.e. Sσ is a singleton.

S is unifiable if it has a unification.

A unification σ of S is a most general unification (mgu) if for every

unification τ of S there is a substitution λ such that τ = σλ.

For example, S = {P(f (x), y),P(f (a),w)} is unifiable by a most general
unification σ = {x/a, y/w}. A unification τ = {x/a, y/b,w/b} is
obtained as σλ for λ = {w/b}. τ is not mgu, it cannot give us
% = {x/a, y/c ,w/c}.

Observation If σ, τ are two most general unifications of S, they differ only
in renaming of variables.
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Unification algorithm
Let S be a (finite) nonempty set of expressions and p be the leftmost
position in which some expressions of S differ. Then the difference in S is
the set D(S) of subexpressions of all expressions from S starting at the
position p.

For example, S = {P(x , y),P(f (x), z),P(z , f (x))} has
D(S) = {x , f (x), z}.

Input Nonempty (finite) set of expressions S .

Output A most general unification σ of S or “S is not unifiable”.

(0) Let S0 := S , σ0 := ∅, k := 0. (initialization)

1 If Sk is a singleton, output σ = σ0σ1 · · ·σk . (mgu of S)

2 Check if D(Sk) contains a variable x and a term t with no occurrence
of x .

3 If not, output “S is not unifiable”.

4 Otherwise, σk+1 := {x/t}, Sk+1 := Skσk+1, k := k + 1, GOTO(1).

Remark The occurrence check of x in t in step (2) can be “expensive”.
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Unification algorithm - an example

S = {P(f (y , g(z)), h(b)), P(f (h(w), g(a)), t), P(f (h(b), g(z)), y)}

1 S0 = S is not singleton, D(S0) = {y , h(w), h(b)} has a term h(w)
and a var. y not occurring in h(w). Then σ1 = {y/h(w)}, S1 = S0σ1:

S1 = {P(f (h(w), g(z)), h(b)), P(f (h(w), g(a)), t), P(f (h(b), g(z)), h(w))}
2 D(S1) = {w , b}, σ2 = {w/b}, S2 = S1σ2, i.e.

S2 = {P(f (h(b), g(z)), h(b)), P(f (h(b), g(a)), t)}
3 D(S2) = {z , a}, σ3 = {z/a}, S3 = S2σ3, i.e.

S3 = {P(f (h(b), g(a)), h(b)), P(f (h(b), g(a)), t)}
4 D(S3) = {h(b), t}, σ4 = {t/h(b)}, S4 = S3σ4, i.e.

S4 = {P(f (h(b), g(a)), h(b))}
5 S4 is a singleton and a most general unification of S is

σ = {y/h(w)}{w/b}{z/a}{t/h(b)} = {y/h(b),w/b, z/a, t/h(b)}
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Unification algorithm - correctness
Proposition The unification algorithm outputs a correct answer in finite
time for any input S, i.e. a most general unification σ of S or it detects
that S is not unifiable. (∗) Moreover, for every unification τ of S it holds
that τ = στ .

Proof It eliminates one variable in each round, so it ends in finite time.

If it ends negatively, D(Sk) is not unifiable, and neither is S .

If it outputs σ = σ0σ1 · · ·σk , clearly σ is a unification of S .

If we show the property (∗) for σ, then σ is a most general unification
of S .

(1) Let τ be a unification of S . We show τ = σ0σ1 · · ·σiτ for all i ≤ k .
(2) For i = 0 it holds. Let σi+1 = {x/t} and assume τ = σ0σ1 · · ·σiτ .
(3) It suffices to show that vσi+1τ = vτ for every variable v .
(4) If v 6= x , vσi+1 = v , so (3) holds. Otherwise v = x and

vσi+1 = xσi+1 = t.
(5) Since τ unifies Si = Sσ0σ1 · · ·σi and both the variable x and the

term t are in D(Si ), τ has to unify x and t, i.e. tτ = xτ , as required
for (3).
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The general resolution rule
Let C1, C2 be clauses with distinct variables such that

C1 = C ′
1 t {A1, . . . ,An}, C2 = C ′

2 t {¬B1, . . . ,¬Bm},

where S = {A1, . . . ,An,B1, . . . ,Bm} is unifiable and n,m ≥ 1. Then the
clause

C = C ′
1σ ∪ C ′

2σ,

where σ is a most general unification of S , is the resolvent of C1 and C2.

For example, in clauses {P(x),Q(x , z)} and {¬P(y),¬Q(f (y), y)} we can
unify S = {Q(x , z),Q(f (y), y)} applying a most general unification
σ = {x/f (y), z/y}, and then resolve to a clause {P(f (y)),¬P(y)}.

Remark The condition on distinct variables can be satisfied by renaming

variables apart. This is sometimes necessary, e.g. from
{{P(x)}, {¬P(f (x))}}
after renaming we can get �, but {P(x),P(f (x))} is not unifiable.
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Resolution proof
We have the same notions as in propositional logic, up to renaming
variables.

Resolution proof (deduction) of a clause C from a formula S is a
finite sequence C0, . . . ,Cn = C such that for every i ≤ n, we have
Ci = C ′

i σ for some C ′
i ∈ S and a renaming of variables σ, or Ci is a

resolvent of some previous clauses.

A clause C is (resolution) provable from S , denoted by S `R C , if it
has a resolution proof from S .

A (resolution) refutation of a formula S is a resolution proof of �
from S .

S is (resolution) refutable if S `R �.

Remark Elimination of several literals at once is sometimes necessary, e.g.

S = {{P(x),P(y)}, {¬P(x),¬P(y)}} is resolution refutable, but it has no

refutation that eliminates only a single literal in each resolution step.
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Resolution in predicate logic - an example

Consider T = {¬P(x , x), P(x , y)→ P(y , x), P(x , y) ∧ P(y , z)→ P(x , z)}.
Is T |= (∃x)¬P(x , f (x)) ? Equivalently, is the following T ′ unsatisfiable?

T ′ = {{¬P(x , x)}, {¬P(x , y),P(y , x)}, {¬P(x , y),¬P(y , z),P(x , z)}, {P(x , f (x))}}

{¬P (x, y),¬P (y, z), P (x, z)} {P (x′, f(x′))}

{¬P (f(x), z), P (x, z)}

{P (x′, f(x′))}{¬P (x, y), P (y, x)}

{P (f(x′), x′)}

{P (x, x)} {¬P (x′, x′)}

x′/x

z/x, x′/x

x/x′, y/f(x′)y/f(x), x′/x

T ′ `R
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Soundness of resolution
First we show soundness of the general resolution rule.

Proposition Let C be a resolvent of clauses C1, C2. Then for every
L-structure A: A |= C1 and A |= C2 ⇒ A |= C .

Proof Let C1 = C ′
1 t {A1, . . . ,An}, C2 = C ′

2 t {¬B1, . . . ,¬Bm}, σ be a most
general unification for S = {A1, . . . ,An,B1, . . . ,Bm}, and C = C ′

1σ ∪ C ′
2σ.

Since C1, C2 are open, it holds also A |= C1σ and A |= C2σ.

We have C1σ = C ′
1σ ∪ {Sσ} and C2σ = C ′

2σ ∪ {¬(Sσ)}.
We show A |= C [e] for every e. If A |= Sσ[e], then A |= C ′

2σ[e], and

thus A |= C [e]. Otherwise A 6|= Sσ[e], so A |= C ′
1σ[e], and thus

A |= C [e].

Theorem (soundness) If S is resolution refutable, then S is
unsatisfiable.

Proof Let S `R �. Suppose A |= S for some structure A. By soundness

of the general resolution rule we have A |= �, which is impossible.
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Lifting lemma
A resolution proof on propositional level can be “lifted” to predicate level.

Lemma Let C ∗1 = C1τ1, C ∗2 = C2τ2 be ground instances of clauses C1, C2

with distinct variables and C ∗ be a resolvent of C ∗1 a C ∗2 . Then there
exists a resolvent C of C1 and C2 such that C ∗ = Cτ1τ2 is a ground
instance of C .

Proof Let C ∗ be a resolvent of C ∗1 , C ∗2 through a literal P(t1, . . . , tk).

We have C1 = C ′
1 t {A1, . . . ,An} and C2 = C ′

2 t {¬B1, . . . ,¬Bm}, where
{A1, . . . ,An}τ1 = {P(t1, . . . , tk)} & {¬B1, . . . ,¬Bm}τ2 = {¬P(t1, . . . , tk)}

Thus (τ1τ2) unifies S = {A1, . . . ,An,B1, . . . ,Bm} and if σ is mgu of
S from the unif. algorithm, then C = C ′1σ ∪ C ′2σ is a resolvent of C1,
C2.

Moreover, (τ1τ2) = σ(τ1τ2) by the property (∗) for σ, and hence

Cτ1τ2 = (C ′1σ ∪ C ′2σ)τ1τ2 = C ′1στ1τ2 ∪ C ′2στ1τ2 = C ′1τ1 ∪ C ′2τ2

= (C1 \ {A1, . . . ,An})τ1 ∪ (C2 \ {¬B1, . . . ,¬Bm})τ2
= (C ∗1 \ {P(t1, . . . , tk)}) ∪ (C ∗2 \ {¬P(t1, . . . , tk)}) = C ∗.
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Completeness
Corollary Let S ′ be the set of all ground instances of clauses of a formula
S. If S ′ `R C ′ (on propositional level) where C ′ is a ground clause, then
C ′ = Cσ for some clause C and a ground substitution σ such that S `R C
(on pred. level).

Proof By induction on the length of resolution proof using lifting lemma.

Theorem (completeness) If S is unsatisfiable, then S `R �.

Proof If S is unsatisfiable, then by the (corollary of) Herbrand’s theorem,
also the set S ′ of all ground instances of clauses of S is unsatisfiable.

By completeness of resolution in prop. logic, S ′ `R � (on prop.
level).

By the above corollary, there is a clause C and a ground substitution
σ such that � = Cσ and S `R C (on pred. level).

The only clause that has � as a ground instance is the clause C = �.
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Linear resolution
As in propositional logic, the resolution method can be significantly refined
(without using completeness).

A linear proof of a clause C from a formula S is a finite sequence

of pairs (C0,B0), . . . , (Cn,Bn) such that C0 ∈ S and for every i ≤ n

i) Bi ∈ S or Bi = Cj for some j < i , and

ii) Ci+1 is a resolvent of Ci and Bi where Cn+1 = C .

C0 is called a starting clause, Ci a central clause, Bi a side clause.

C is linearly provable from S , S `L C , if it has a linear proof from S .

A linear refutation of S is a linear proof of � from S .

S is linearly refutable if S `L �.

Theorem S is linearly refutable, if and only if it is unsatisfiable.

Proof (⇒) Every linear proof can be transformed to a (general) resolution
proof. (⇐) Follows from completeness of propositional resolution, the
lifting lemma preserves linearity of proofs.
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LI-resolution

As in prop. logic, for Horn formulas we can further refine linear resolution.

LI-resolution (“linear input”) from S is a linear resolution from S in
which every side clause Bi is a variant of a clause from S . We write
S `LI C to denote that C is provable by LI-resolution from S .

a Horn clause is a clause containing at most one positive literal,

a Horn formula is a (possibly infinite) set of Horn clauses,

a fact is a (Horn) clause {p} where p is a positive literal,

a rule is a (Horn) clause with exactly one positive literal and at least
one negative literal. Rules and facts are program clauses,

a goal is a nonempty (Horn) clause with only negative literals.

Theorem If T is a satisfiable Horn formula but T ∪{G} is unsat. for some
goal G , then � has a LI-resolution from T ∪ {G} with starting clause G.

Proof Follows from Herbrand’s Theorem, the same theorem in
propositional logic, and the lifting lemma.
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A program in Prolog

A (Prolog) program is a Horn formula containing only program clauses, i.e.
facts and rules.

son(X ,Y ) : −father(Y ,X ),man(X ) {son(X ,Y ),¬father(Y ,X ),¬man(X )}
son(X ,Y ) : −mother(Y ,X ),man(X ) {son(X ,Y ),¬mother(Y ,X ),¬man(X )}
man(john). {man(john)}
father(george, john). {father(george, john)}
mother(julie, john). {mother(julie, john)}

?− son(john,X ) P |= (∃X )son(john,X ) {¬son(john,X )}

We want to know if the given query follows from the program.

Theorem Let P be a program and G = {¬A1, . . . ,¬An} a goal in
variables X1, . . . ,Xm. TFAE:

(1) P |= (∃X1) . . . (∃Xm)(A1 ∧ · · · ∧ An), if and only if

(2) has a LI-resolution from P ∪ {G} staring with (a variant of) the
goal G .
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LI-resolution over the program

If the answer to the query is positive, we also want to know the output
substitution. The output substitution σ for LI-resolution of from
P ∪ {G} starting from G = {¬A1, . . . ,¬An} is the composition of mgu
from individual steps (only for variables of G . Note that:

P |= (A1 ∧ . . .An)σ
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Hilbert’s calculus in predicate logic
basic connectives and quantifier: ¬, →, (∀x) (others are derived)

allows to prove any formula (not just sentences)

logical axioms (schemes of axioms):

(i) ϕ→ (ψ → ϕ)

(ii) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(iii) (¬ϕ→ ¬ψ)→ (ψ → ϕ)

(iv) (∀x)ϕ→ ϕ(x/t) if t is substitutable for x to ϕ

(v) (∀x)(ϕ→ ψ)→ (ϕ→ (∀x)ψ) if x is not free in ϕ

where ϕ, ψ, χ are any formulas (of a given language), t is any term,

and x is any variable

in a language with equality we include also the axioms of equality

rules of inference
ϕ, ϕ→ ψ

ψ
(modus ponens),

ϕ

(∀x)ϕ
(generalization)
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Hilbert-style proofs
A proof (in Hilbert-style) of a formula ϕ from a theory T is a finite
sequence ϕ0, . . . , ϕn = ϕ of formulas such that for every i ≤ n

ϕi is a logical axiom or ϕi ∈ T (an axiom of the theory), or

ϕi can be inferred from the previous formulas applying a rule of
inference.

A formula ϕ is provable from T if it has a proof from T , denoted by
T `H ϕ.

Theorem (soundness) For every T and ϕ, T `H ϕ ⇒ T |= ϕ.

Proof

If ϕ is an axiom (logical or from T ), then T |= ϕ (l. axioms are
tautologies),

if T |= ϕ and T |= ϕ→ ψ, then T |= ψ, i.e. modus ponens is sound,

if T |= ϕ, then T |= (∀x)ϕ, i.e. generalization is sound,

thus every formula in a proof from T is valid in T .

Remark The completeness holds as well, i.e. T |= ϕ⇒ T `H ϕ.
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Basic algebraic theories
theory of groups in the language L = 〈+,−, 0〉 with equality:

x + (y + z) = (x + y) + z (associativity of +)

0 + x = x = x + 0 (0 is neutral to +)

x + (−x) = 0 = (−x) + x (−x is inverse of x)

theory of Abelian groups has moreover ax. x + y = y + x
(commutativity)

theory of rings in L = 〈+,−, ·, 0, 1〉 with equality has additionally

1 · x = x = x · 1 (1 is neutral to ·)
x · (y · z) = (x · y) · z (associativity of ·)
x · (y + z) = x · y + x · z , (x + y) · z = x · z + y · z (distributivity)

theory of commutative rings has moreover the axiom x · y = y · x
(commutativity)

theory of fields in the same language has additionally the axioms

x 6= 0→ (∃y)(x · y = 1) (existence of inverses to ·)
0 6= 1 (nontriviality)
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Theories of structures
What properties hold in particular structures?

The theory of a structure A is the set Th(A) of all sentences (of the same

language) that are valid in A.

Observation For every structure A and a theory T of a language L,

(i) Th(A) is a complete theory,

(ii) if A |= T, then Th(A) is a simple (complete) extension of T ,

(iii) if A |= T and T is complete, then Th(A) is equivalent with T ,

i.e. θL(T ) = Th(A).

E.g. Th(N) where N = 〈N, S ,+, ·, 0,≤〉 is the arithmetics of natural
numbers.

Remark Later, we will see that Th(N) is (algorithmically) undecidable
although it is complete.
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Elementary equivalence

Structures A and B of a language L are elementarily equivalent,
denoted A ≡ B, if they satisfy the same sentences (of L), i.e.
Th(A) = Th(B).

For example, 〈R,≤〉 ≡ 〈Q,≤〉 and 〈Q,≤〉 6≡ 〈Z,≤〉 since every
element has an immediate successor in 〈Z,≤〉 but not in 〈Q,≤〉.

T is complete iff it has a single model, up to elementary equivalence.

For example, the theory of dense linear orders without ends (DeLO).

How to describe models of a given theory (up to elementary equivalence)?

Observation For every models A, B of a theory T , A ≡ B if and only if

Th(A), Th(B) are equivalent (simple complete extensions of T).

Remark If we can describe effectively (recursively) for a given theory T

all simple complete extensions of T , then T is (algorithmically) decidable.
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Simple complete extensions - an example
The theory DeLO∗ of dense linear orders of L = 〈≤〉 with equality:

x ≤ x (reflexivity)

x ≤ y ∧ y ≤ x → x = y (antisymmetry)

x ≤ y ∧ y ≤ z → x ≤ z (transitivity)

x ≤ y ∨ y ≤ x (dichotomy)

x < y → (∃z) (x < z ∧ z < y) (density)

(∃x)(∃y)(x 6= y) (nontriviality)

where ‘x < y ’ is a shortcut for ‘x ≤ y ∧ x 6= y ’.

Let ϕ, ψ be the sentences (∃x)(∀y)(x ≤ y), resp. (∃x)(∀y)(y ≤ x). We
will show that the following are all (inequivalent) simple complete
extensions of the theory DeLO∗:

DeLO = DeLO∗ ∪ {¬ϕ,¬ψ}, DeLO± = DeLO∗ ∪ {ϕ,ψ},
DeLO+ = DeLO∗ ∪ {¬ϕ,ψ}, DeLO− = DeLO∗ ∪ {ϕ,¬ψ}
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Corollary of the Löwenheim-Skolem theorem
We already know the following theorem, by a canonical model (with =).

Theorem Let T be a consistent theory of a countable language L. If L is
without equality, then T has a countably infinite model. If L is with
equality, then T has a model that is countable (finite or countably
infinite).

Corollary For every structure A of a countable language without equality
there exists a countably infinite structure B with A ≡ B.

Proof Th(A) is consistent since it has a model A. By the previous
theorem, it has a countably inf. model B. Since Th(A) is complete, we
have A ≡ B.

Corollary For every infinite structure A of a countable language with
equality there exists a countably infinite structure B with A ≡ B.

Proof Similarly as above. Since the sentence “there is exactly n elements”
is false in A for all n and A ≡ B, it follows that B is infinite.
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A countable algebraically closed field

We say that a field A is algebraically closed if every polynomial (of
nonzero degree) has a root in A; that is, for every n ≥ 1 we have

A |= (∀xn−1) . . . (∀x0)(∃y)(yn + xn−1 · yn−1 + · · ·+ x1 · y + x0 = 0)

where yk is a shortcut for the term y · y · · · · · y ( · applied (k−1)-times).

For example, the field C = 〈C,+,−, ·, 0, 1〉 is algebraically closed, whereas
the fields R and Q are not (since the polynomial x2 + 1 has no root in
them).

Corollary There exists a countable algebraically closed field.

Proof By the previous corollary, there is a countable structure elementarily
equivalent with the field C. Hence it is algebraically closed as well.
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Isomorphisms of structures

Let A and B be structures of a language L = 〈F ,R〉.

A bijection h : A→ B is an isomorphism of structures A and B if

(i) h(f A(a1, . . . , an)) = f B(h(a1), . . . , h(an))

for every n-ary function symbol f ∈ F and every a1, . . . , an ∈ A,

(ii) RA(a1, . . . , an) ⇔ RB(h(a1), . . . , h(an))

for every n-ary relation symbol R ∈ R and every a1, . . . , an ∈ A.

A and B are isomorphic (via h), denoted A ' B (A 'h B), if there is

an isomorphism h of A and B. We also say A is isomorphic with B.

An automorphism of a structure A is an isomorphism of A with A.

For example, the power set algebra P(X ) = 〈P(X ),−,∩,∪, ∅,X 〉 with
X = n is isomorphic to the Boolean algebra n2 = 〈n2,−n,∧n,∨n, 0n, 1n〉
via h : A 7→ χA where χA is the characteristic function of the set A ⊆ X.
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Isomorphisms and semantics
We will see that isomorphism preserves semantics.

Proposition Let A and B be structures of a language L = 〈F ,R〉. A

bijection h : A→ B is an isomorphism of A and B if and only if both

(i) h(tA[e]) = tB [he] for every term t and e : Var→ A,

(ii) A |= ϕ[e] ⇔ B |= ϕ[he] for every formula ϕ and e : Var→ A.

Proof (⇒) By induction on the structure of t, resp. ϕ.

(⇐) By applying (i) for each term f (x1, . . . , xn) or (ii) for each atomic
formula R(x1, . . . , xn) and assigning e(xi ) = ai we verify that h is an
isomorphism.

Corollary For every structures A and B of the same language,

A ' B ⇒ A ≡ B.

Remark The other implication (⇐) does not hold in general. For example,

〈Q,≤〉 ≡ 〈R,≤〉 but 〈Q,≤〉 6' 〈R,≤〉 since |Q| = ω and |R| = 2ω.
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Finite models in language with equality
Proposition For every finite structures A, B of a language with equality,

A ≡ B ⇒ A ' B.
Proof |A| = |B| since we can express “there are exactly n elements”.

Let A′ be expansion of A to L′ = L ∪ {ca}a∈A by names of elements.
We show that B has an expansion B′ to L′ such that A′ ≡ B′. Then

clearly h : a 7→ cB
′

a is an isomorfism of A′ to B′, and thus also A to B.
If suffices to find b ∈ B for every cA

′
a = a ∈ A s.t. 〈A, a〉 ≡ 〈B, b〉.

Let Ω be set of all formulas ϕ(x) s.t. 〈A, a〉 |= ϕ(x/ca), i.e.
A |= ϕ[e(x/a)]
Since A is finite, there are finitely many formulas ϕ0(x), . . . , ϕm(x)
such that for every ϕ ∈ Ω it holds A |= ϕ↔ ϕi for some i .
Since B ≡ A |= (∃x)

∧
i≤m ϕi , there exists b ∈ B s.t.

B |=
∧

i≤m ϕi [e(x/b)].
Hence for every ϕ ∈ Ω it holds B |= ϕ[e(x/b)], i.e. 〈B, b〉 |= ϕ(x/ca).

Corollary If a complete theory T in a language with equality has a finite

model, then all models of T are isomorphic.
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Definable sets and automorphisms
The set defined by ϕ(x̄ , ȳ) with parameters b̄ ∈ A|ȳ | in A is

ϕA,b̄(x̄ , ȳ) = {ā ∈ A|x̄ | | A |= ϕ[e(x̄/ā, ȳ/b̄)]}

Proposition Let D ⊆ An be a set definable in a structure A with
parameters b̄ and let h be an automorphism of A which is identical on b̄.
Then h[D] = D.

Proof Let D = ϕA,b̄(x̄ , ȳ). Then for any ā ∈ A|x̄ |:

ā ∈ D ⇔ A |= ϕ[e(x̄/ā, ȳ/b̄)]

⇔ A |= ϕ[(e ◦ h)(x̄/ā, ȳ/b̄)]

⇔ A |= ϕ[e(x̄/h(ā), ȳ/h(b̄))]

⇔ A |= ϕ[e(x̄/h(ā), ȳ/b̄)]

⇔ h(ā) ∈ D

Example: find automorphisms of a given graph.
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Categoricity
The (isomorphism) spectrum of a theory T is given by the number
I (κ,T ) of mutually nonisomorphic models of T for every cardinality
κ.

A theory T is κ-categorical if it has exactly one (up to isomorphism)
model of cardinality κ, i.e. I (κ,T ) = 1.

Proposition The theory DeLO (i.e. “without ends”) is ω-categorical.

Proof Let A, B |= DeLO with A = {ai}i∈N, B = {bi}i∈N. By induction
on n we can find injective partial functions hn ⊆ hn+1 ⊂ A× B preserving
the ordering s.t. {ai}i<n ⊆ dom(hn) and {bi}i<n ⊆ rng(hn). Then A ' B
via h =

⋃
n hn.

Similarly we obtain that (e.g.) A = 〈Q,≤〉, A � (0, 1], A � [0, 1), A � [0, 1]
are (up to isomorphism) all countable models of DeLO∗. Then

I (κ,DeLO∗) =

{
0 for κ ∈ N,
4 for κ = ω.

NAIL062 Propositional & Predicate Logic Lecture 13 January 4, 2021 3 / 30



ω-categorical criterium of completeness

Theorem Let L be at most countable language.

(i) If a theory T in L without equality is ω-categorical, then it is
complete.

(ii) If a theory T in L with equality is ω-categorical and without finite

models, then it is complete.

Proof Every model of T is elementarily equivalent with some countably

infinite model of T , but such model is unique up to isomorphism. Thus all

models of T are elementarily equivalent, i.e. T is complete.

For example, DeLO, DeLO+, DeLO−, DeLO± are complete and they are

the all (mutually nonequivalent) simple complete extensions of DeLO∗.

Remark A similar criterium holds also for cardinalities bigger than ω.
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Axiomatizability
Can the given part of the world be “nicely” described?

Let K ⊆ M(L) be a class of L-structures. We say that K is

axiomatizable if there exists a theory T such that M(T ) = K ,

finitely axiomatizable if is it axiomatizable by a finite theory, and

openly axiomatizable if is it axiomatizable by an open theory.

a theory T is finitely [openly] axiomatizable if M(T ) is.

Observation If K is axiomatizable, then it is closed under elementary
equivalence.
For example:

linear orders are finitely and openly axiomatizable,

fields are finitely but not openly axiomatizable, and

infinite groups are axiomatiable, but not finitely axiomatizable.
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A consequence of compactness

Theorem If a theory T has for every n > 0 an at least n-element model,
then T has an infinite model.
Proof Obvious for languages without equality, conside L with =.

Consider the extension T ′ = T ∪ {ci 6= cj | i 6= j} of T in the
language extended by countably infinitely many new constant symbols
ci .

By assumption, every finite part of T ′ has a model.

By the Compactness theorem, T ′ has a model A′ but that model is
necessarily infinite.

The redukt of A′ to the original language is an infinite modle of T .

Corollary If a theory T has for every n > 0 an at least n-element model,
then the class of all finite models of T is not axiomatizable.
For example, finite groups, finite fields etc. are not axiomatizable. But the
class of all infinite models of a theory T in a language with equality is
axiomatizable.
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Finite axiomatizability

Theorem Let K ⊆ M(L) and K̄ = M(L)\K , where L is a langauge. Then
K is finitely axiomatizable, if and only if both K and K̄ are axiomatizable.

Proof (⇒) If T is a finite axiomatization of K in closed form, then the
theory with a single axiom

∨
ϕ∈T ¬ϕ axiomatizes K̄ .

(⇐) To prove this implication:

Let T ,S be theories of a language L such that M(T ) = K and
M(S) = K̄ .

Then M(T ∪ S) = M(T ) ∩M(S) = ∅ and by compactness, there
exist finite T ′ ⊆ T and finite S ′ ⊆ S such that
∅ = M(T ′ ∪ S ′) = M(T ′) ∩M(S ′).

The finite theory T ′ axiomatizes K , since

M(T ) ⊆ M(T ′) ⊆ M(S ′) ⊆ M(S) = M(T ).
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Finite axiomatizability – an example
Let T be the theory of fields. We say that a field A = 〈A,+,−, ·, 0, 1〉 is

of characteristic 0 if there is no p ∈ N+ such that A |= p1 = 0 where
p1 denotes the term 1 + 1 + · · ·+ 1 (where + is applied
(p − 1)-times).

of characteristic p, where p is a prime number, if p is smallest such
that A |= p1 = 0

The class of fields of characteristic p, for a fixed prime p, is finitely
axiomatizable by the theory T ∪ {p1 = 0}.
The class of fields of characteristic 0 is axiomatized by an (infinite)
theory T ′ = T ∪ {p1 6= 0 | p ∈ N+}.

Proposition The class K of field of characteristic 0 is not finitely
axiomatizable.
Proof It suffices to show that K̄ is not axiomatizable. If M(S) = K̄ , then
S ′ = S ∪ T ′ has a model B, because every finite S∗ ⊆ S ′ has a model (a
field of characteristic p′ where p′ is a prime greater than any prime p
appearing in the axioms of S∗), But then B ∈ M(S) = K̄ and at the same
time B ∈ M(T ′) = K which is not possible.
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Open axiomatizability

Theorem If a theory T is openly axiomatizable, then every substructure
of a model of T is also a model of T .

Proof Let T ′ be an open axiomatization of M(T ), A |= T ′ and B ⊆ A.
We know that for every ϕ ∈ T ′, B |= ϕ because ϕ is open. Therefore B is
a model of T ′.

Note The converse is also true: if every substructure of a model of a
theory T is a model of T as well, then T is openly axiomatizable.

For example, the theory DeLO is not openly axiomatizable, because for
example a finite substructure of a model of DeLO is not a model of DeLO.

As another example, at most n-element groups, for a fixed n > 1, are
openly axiomatizable:

T ∪ {
∨

i ,j≤n,i 6=j

xi = xj}

where T is the (open) theory of groups
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Recursive and recursively enumerable sets
Which problems are algorithmically solvable?

The notion of “algorithm” can be rigorously formalized (e.g. by TM).

We may encode decision problems into sets of natural numbers
corresponding to the positive instances (with answer yes). For
example,

SAT = {dϕe | ϕ is a satisfiable proposition in CNF}.

A set A ⊆ N is recursive if there is an algorithm that for every input
x ∈ N halts and correctly tells whether or not x ∈ A. We say that
such algorithm decides x ∈ A.

A set A ⊆ N is recursively enumerable (r. e.) if there is an algorithm
that for every input x ∈ N halts if and only if x ∈ A. We say that
such algorithm recognizes x ∈ A. Equivalently, A is recursively
enumerable if there is an algorithm that generates (i.e. enumerates)
all elements of A.

Observation For every A ⊆ N it holds that A is recursive ⇔ A, A are r. e.
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Decidable theories

Is the truth in a given theory algorithmically decidable?

We (always) assume that the language L is recursive. A theory T of L is

decidable if Thm(T ) is recursive; otherwise, T is undecidable.

Proposition For every theory T of L with recursively enumerable axioms,

i Thm(T ) is recursively enumerable,

ii if T is complete, then Thm(T ) is recursive, i.e. T is decidable.

Proof The construction of systematic tableau from T with a root Fϕ
assumes a given enumeration of axioms of T . Since T has recursively
enumerable axioms, the construction provides an algorithm that recognizes
T ` ϕ.

If T is complete, then T 6` ϕ if and only if T ` ¬ϕ for every sentence ϕ.
Hence, the parallel construction of systematic tableaux from T with roots
Fϕ resp. Tϕ provides an algorithm that decides T ` ϕ.
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Recursively enumerable complete extensions

What happens if we are able to describe all simple complete extensions?

We say that the set of all (up to equivalence) simple complete extensions
of a theory T is recursively enumerable if there exists an algorithm α(i , j)
that generates i-th axiom of j-th extension (in some enumeration) or
announces that it (such an axiom or an extension) does not exist.

Proposition If a theory T has recursively enumerable axioms and the set
of all (up to equivalence) simple complete extensions of T is recursively
enumerable, then T is decidable.

Proof By the previous proposition there is an algorithm to recognize
T ` ϕ. On the other hand, if T 6` ϕ then T ′ ` ¬ϕ is some simple
complete extension T ′ of T . This can be recognized by parallel
construction of systematic tableaux with root Tϕ from all extensions. In
the i-th step we construct tableaux up to i levels for the first i extensions.
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Examples of decidable theories

The following theories are decidable although not complete.

the theory of pure equality; with no axioms, in L = 〈〉 with equality,

the theory of unary predicate; with no axioms, in L = 〈U〉 with
equality, where U is a unary relation symbol,

the theory of dense linear orders DeLO∗,

the theory of algebraically closed fields in L = 〈+,−, ·, 0, 1〉 with
equality, with the axioms of fields, and the axioms (for all n ≥ 1)

(∀xn−1) . . . (∀x0)(∃y)(yn + xn−1 · yn−1 + · · ·+ x1 · y + x0 = 0),

where yk is a shortcut for the term y · y · · · · · y ( · applied
(k − 1)-times).

the theory of Abelian groups,

the theory of Boolean algebras.
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Recursive axiomatizability

Can we “effectively” describe common mathematical structures?

A class K ⊆ M(L) is recursively axiomatizable if there exists a
recursive theory T of language L with M(T ) = K .

A theory T is recursively axiomatizable if M(T ) is recursively
axiomatizable, i.e. there is an equivalent recursive theory.

Proposition For every finite structure A of a finite language with equality
the theory Th(A) is recursively axiomatizable. Thus, Th(A) is decidable.

Proof Let A = {a1, . . . , an}. Th(A) can be axiomatized by a single
sentence (thus recursively) that describes A. It is of the form “there are
exactly n elements a1, . . . , an satisfying exactly those atomic formulas on
function values and relations that are valid in the structure A.”
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Examples of recursive axiomatizability

The following structures A have recursively axiomatizable Th(A).

〈Z,≤〉, by the theory of discrete linear orderings,

〈Q,≤〉, by the theory of dense linear orderings without ends (DeLO),

〈N,S , 0〉, by the theory of successor with zero,

〈N,S ,+, 0〉, by so called Presburger arithmetic,

〈R,+,−, ·, 0, 1〉, by the theory of real closed fields,

〈C,+,−, ·, 0, 1〉, by the theory of algebraically closed fields with

characteristic 0.

Corollary For all the above structures A the theory Th(A) is decidable.

Remark However, N = 〈N,S ,+, ·, 0,≤〉 is not recursively axiomatizable.

(This follows from the Gödel’s incompleteness theorem).
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Robinson arithmetic
How to effectively and “almost” completely axiomatize
N = 〈N,S ,+, ·, 0,≤〉?

The language of arithmetic is L = 〈S ,+, ·, 0,≤〉 with equality.

Robinson arithmetic Q has axioms (finitely many)

S(x) 6= 0 x · 0 = 0

S(x) = S(y)→ x = y x · S(y) = x · y + x

x + 0 = x x 6= 0→ (∃y)(x = S(y))

x + S(y) = S(x + y) x ≤ y ↔ (∃z)(z + x = y)

Remark Q is quite weak; for example, it does not prove commutativity or
associativity of +, ·, or transitivity of ≤. However, it suffices to prove, for
example, existential sentences on numerals that are true in N.

For example, for ϕ(x , y) in the form (∃z)(x + z = y) it is

Q ` ϕ(1, 2), where 1 = S(0) and 2 = S(S(0)).
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Peano arithmetic

Peano arithmetic PA has axioms of

a Robinson arithmetic Q,

b scheme of induction; that is, for every formula ϕ(x , y) of L the axiom

(ϕ(0, y) ∧ (∀x)(ϕ(x , y)→ ϕ(S(x), y)))→ (∀x)ϕ(x , y).

Remark PA is quite successful approximation of Th(N), it proves all
“elementary” properties that are true in N (e.g. commutativity of +). But
it is still incomplete, there are sentences that are true in N but
independent in PA.

Remark In the second-order language we can completely axiomatize N (up
to isomorphism) by taking directly the following (second-order) axiom of
induction instead of scheme of induction

(∀X ) ((X (0) ∧ (∀x)(X (x)→ X (S(x))))→ (∀x) X (x)).
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Hilbert’s 10th problem

Let p(x1, . . . , xn) be a polynomial with integer coefficients. Does the

Diophantine equation p(x1, . . . , xn) = 0 have a solution in integers?

Hilbert (1900) “Find an algorithm that determines in finitely many
steps whether a given Diophantine equation in an arbitrary number of
variables and with integer coefficient has an integer solution.”

Remark Equivalently, one may ask for an algorithm to determine whether
there is a solution in natural numbers.

Theorem (DPRM, 1970) The problem of existence of integer solution to

a given Diophantine equation with integer coefficients is alg. undecidable.

Corollary There is no algorithm to determine for given polynomials

p(x1, . . . , xn), q(x1, . . . , xn) with natural coefficients whether

N |= (∃x1) . . . (∃xn)(p(x1, . . . , xn) = q(x1, . . . , xn)).
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Undecidability of predicate logic

Is there an algorithm to decide if a given sentence is (logically) true?

We know that Robinson arithmetic Q has finitely many axioms, model
N, and proves existential sentences on numerals that are true in N.

Precisely, for every existential formula ϕ(x1, . . . , xn) in arithmetic,

Q ` ϕ(x1/a1, . . . , xn/an) ⇔ N |= ϕ[e(x1/a1, . . . , xn/an)]

for every a1, . . . , an ∈ N where ai denotes the ai -th numeral.

In particular, for ϕ of the form
(∃x1) . . . (∃xn)(p(x1, . . . , xn) = q(x1, . . . , xn)), where p, q are polynomials
with natural coefficients (numerals) we have

N |= ϕ ⇔ Q ` ϕ ⇔ ` ψ → ϕ ⇔ |= ψ → ϕ,

where ψ is the conjunction of (closures) of all axioms of Q.

Thus, if there were an algorithm deciding logical truth of sentences,
there would be also an algorithm deciding N |= ϕ, which is impossible.
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Gödel’s incompleteness theorems

Theorem (1st) For every consistent recursively axiomatized extension T
of Robinson arithmetic there is a sentence true in N and unprovable in T .

Remarks

“Recursively axiomatized” means that T is “effectively given”.

“Extension of R. arithmetic” means that T is “sufficiently strong”.

If, moreover, N |= T, the theory T is incomplete.

The sentence constructed in the proof says “I am not provable in T”.

The proof is based on two principles:

(a) arithmetization of syntax,

(b) self-reference.
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Arithmetization - provability predicate
Finite objects of syntax (symbols of language, terms, formulas, finite

tableaux, proofs) can be (effectively) encoded by natural numbers.

Let dϕe denote the code of formula ϕ and let ϕ denote the numeral

(a term of arithmetic) representing dϕe.
If T has recursive axiomatization, the relation PrfT ⊆ N2 is recursive.

PrfT (x , y) ⇔ a (tableau) y is a proof of (a sentence) x in T.

If, moreover, T extends Robinson arithmetic Q, the relation PrfT can
be represented by some formula PrfT (x , y) s.t. for every x , y ∈ N

Q ` PrfT (x , y), if PrfT (x , y),

Q ` ¬PrfT (x , y), otherwise.

PrfT (x , y) expresses that “y is a proof of x in T”.

(∃y)PrfT (x , y) expresses that “x is provable in T”.

If T ` ϕ, then N |= (∃y)PrfT (ϕ, y) and moreover
T ` (∃y)PrfT (ϕ, y).
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Self-reference principle

This sentence has 24 letters.

In formal systems self-reference is not always available
straightforwardly.

The following sentence has 32 letters “The following sentence has 32

letters”.

Such direct reference is available, if we can “talk” about sequences of

symbols. But the above sentence is not self-referencial.

The following sentence written once more and then once again
between quotation marks has 116 letters “The following sentence
written once more and then once again between quotation marks has
116 letters”.

With use of direct reference we can have self-reference. Instead of “it
has x letters” we can have other properties.
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Fixed-point theorem
Theorem Let T be consistent extension of Robinson arithmetic. For
every formula ϕ(x) in language of theory T there is a sentence ψ s.t.
T ` ψ ↔ ϕ(ψ).

Remark ψ is self-referencial, it says “This formula satisfies condition ϕ”.

Proof (idea) Consider the doubling function d : for every formula χ(x)

d(dχ(x)e) = dχ(χ(x))e

It can be shown that d is expressible in T . Assume (for simplicity)
that it is expressible by some term, denoted also by d .

Then for every formula χ(x) in language of theory T it holds that

T ` d(χ(x)) = χ(χ(x)) (1)

We take ϕ(d(ϕ(d(x)))) for ψ. If suffices to verify that
T ` d(ϕ(d(x))) = ψ.

This follows from (1) for χ(x) being ϕ(d(x)), since in this case

T ` d(ϕ(d(x))) = ϕ(d(ϕ(d(x))))
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Undefinability of truth

We say that a formula τ(x) defines truth in theory T of arithmetical
language if for every sentence ϕ it holds that T ` ϕ↔ τ(ϕ).

Theorem Let T be consistent extension of Robinson arithmetic. Then T
has no definition of truth.

Proof By the fixed-point theorem for ¬τ(x) there is a sentence ϕ such
that

T ` ϕ↔ ¬τ(ϕ).

Supposing that τ(x) defines truth in T , we would have

T ` ϕ↔ ¬ϕ,

which is impossible in a consistent theory T .

Remark This is based on the liar paradox, the sentence ϕ would express

“This sentence is not true in T”.
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Proof of the first incompleteness theorem
Theorem (Gödel) For any consistent recursively axiomatized extension T
of Robinson arithmetic there is a sentence true in N and unprovable in T .

Proof Let ϕ(x) be ¬(∃y)PrfT (x , y), it says “x is not provable in T”.

By the fixed-point theorem for ϕ(x) there is a sentence ψT such that

T ` ψT ↔ ¬(∃y)PrfT (ψT , y). (2)

ψT says “I am not provable in T”. More precisely, ψT is equivalent
to a sentence expressing that ψT is not provable T (where the
equivalence holds both in N and in T ).

First, we show ψT is not provable in T . If T ` ψT , i.e. ψT is
contradictory in N, then N |= (∃y)PrfT (ψT , y) and moreover
T ` (∃y)PrfT (ψT , y). Thus from (2) it follows T ` ¬ψT , which is
impossible since T is consistent.

It remains to show ψT is true in N. If not, i.e. N |= ¬ψT , then
N |= (∃y)PrfT (ψT , y). Hence T ` ψT , which we already disproved.
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Corollaries and a strengthened version

Corollary If, moreover, N |= T, then the theory T is incomplete.

Proof Suppose T is complete. Then T ` ¬ψT and thus N |= ¬ψT , which
contradicts N |= ψT .

Corollary Th(N) is not recursively axiomatizable.

Proof Th(N) is consistent extension of Robinson arithmetic and has a
model N. Suppose Th(N) is recursively axiomatizable. Then by previous
corollary, Th(N) is incomplete, but Th(N) is clearly complete.

Gödel’s first incompleteness theorem can be strengthened as follows.

Theorem (Rosser) Every consistent recursively axiomatized extension T
of Robinson arithmetic has an independent sentence. Thus T is
incomplete.

Remark Hence the assumption in the first corollary that N |= T is
superfluous.
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Gödel’s second incompleteness theorem
Let ConT denote the sentence ¬(∃y)PrfT (0 = 1, y). We have that

N |= ConT ⇔ T 6` 0 = 1. Thus ConT expresses that “T is consistent”.

Theorem (Gödel) For every consistent recursively axiomatized extension
T of Peano arithmetic it holds that ConT is unprovable in T .

Proof (idea) Let ψT be the Gödel’s sentence “This is not provable in T”.

In the first part of the proof of the 1st theorem we showed that

“If T is consistent, then ψT is not provable in T .” (3)

In other words, we showed it holds ConT → ψT .

If T is an extension of Peano arithmetic, the proof of (3) can be

formalized within the theory T itself. Hence T ` ConT → ψT .

Since T is consistent by the assumption, from (3) we have T 6` ψT .

Therefore from the previous two bullets, it follows that T 6` ConT .

Remark Hence such a theory T cannot prove its own consistency.
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Corollaries of the second theorem

Corollary Peano arithmetic has a model A s.t. A |= (∃y)PrfPA(0 = 1, y).

Remark A has to be nonstandard model of PA, the witness must be some
nonstandard element (other than a value of a numeral).

Corollary There is a consistent recursively axiomatized extension T of
Peano arithmetic such that T ` ¬ConT .

Proof Let T = PA ∪ {¬ConPA}. Then T is consistent since PA 6` ConPA.
Moreover, T ` ¬ConPA, i.e. T proves inconsistency of PA ⊆ T , and thus
also T ` ¬ConT .

Remark N cannot be a model of T .

Corollary If the set theory ZFC is consistent, then ConZFC is unprovable
in ZFC.
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